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Abstract 8 

Situation awareness (SA) has received much attention in recent years because of its 9 

importance for operators of dynamic systems. Electroencephalography (EEG) can be used to 10 

measure mental states of operators related to SA. However, cross-subject EEG-based SA 11 

recognition is a critical challenge, as data distributions of different subjects vary significantly. 12 

Subject variability is considered as a domain shift problem. Several attempts have been made 13 

to find domain-invariant features among subjects, where subject-specific information is 14 

neglected. In this work, we propose a simple but efficient subject matching framework by 15 

finding a connection between a target (test) subject and source (training) subjects. Specifically, 16 

the framework includes two stages: (1) we train the model with multi-source domain alignment 17 

layers to collect source domain statistics. (2) During testing, a distance is computed to perform 18 

subject matching in the latent representation space. We use a reciprocal exponential function 19 

as a similarity measure to dynamically select similar source subjects. Experiment results show 20 

that our framework achieves a state-of-the-art accuracy 74.32% for the Taiwan driving dataset.  21 
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1. Introduction 24 

Endsley [1] defined Situation Awareness (SA) as “the perception of the elements in the 25 

environment within a volume of time and space, the comprehension of their meaning, and the 26 

projection of their status in the near future”. In recent years, not only dynamic system design 27 
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requires measurements of SA [2], but also SA is indispensable to evaluating and training the 1 

operators in dynamic systems [3]. Therefore, SA has received increasing attention in recent 2 

years. Researchers are concerned about how to measure SA efficiently and precisely in practice. 3 

Different from conventional evaluation methods, such as SAGAT, SPAM, etc. [4], 4 

electroencephalography (EEG) is one of the most commonly used signals to record brain 5 

activities [5]. Moreover, EEG has become one of the most favored ways to assess SA, due to 6 

its non-intrusiveness and objectivity. Recently, researchers adopted machine learning 7 

algorithms to perform recognition based on EEG [6-8] (or based on facial expression [9-12]).  8 

However, EEG-based SA recognition is restricted by the subject variability problem, which 9 

also occurs commonly in the related fields of workload [13] and motor imaginary [14] 10 

recognition. 11 

A solution to the subject variability problem is to find subject-invariant features. Like 12 

previous works [15, 16], we also treat this problem as a “domain shift” problem which was 13 

first proposed in image processing [17]: each subject constitutes a domain himself and EEG 14 

data distribute differently across different domains. The “domain shift” problem in EEG can 15 

be attributed mainly to four reasons: a) Individual differences in human brain functional and 16 

anatomical connections [18], b) misregistration during data collection from different skull 17 

shapes across subjects, c) changes of environment and sensor states in different experiment 18 

sessions and days, and d) variations in subjects’ other mental states, emotional conditions, and 19 

task-irrelevant brain activity disturbances [19]. 20 

Up to now, in EEG processing, state-of-the-art approaches dealing with the “domain shift” 21 

problem mainly employ unsupervised domain adaptation [20], a transfer leaning technique that 22 

transfers knowledge from the source domain to the target domain. Domain adaptation 23 

techniques have made great progress in image processing [21-23] and have been applied in 24 

EEG processing, for example, Transferable Component Analysis (TCA) [24] and Maximum 25 
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Independence Domain Adaptation (MIDA) [25]. Domain adaptation exploits the labeled 1 

source domain data and unlabeled target domain data to perform feature alignment. However, 2 

target subjects are usually unknown during training. Domain generalization (DG), another 3 

popular branch of transfer learning, is more suitable when dealing with unknown domains. 4 

Traditional machine learning assumes that training and testing data are identically and 5 

independently distributed (i.i.d.). However, this assumption may not hold in applications like 6 

multi-subject EEG. Domain generalization (DG) aims at generalizing from source domains to 7 

unseen target domains with different data distributions from the source domains. In computer 8 

vision, various domain generalization frameworks are designed to generalize from source 9 

domains to target domains [26-28].  10 

In EEG processing, most of the previous works using transfer learning considers training 11 

data from different subjects a whole source domain and considers the test subject data the target 12 

domain. In deep learning, batch normalization (BN) layer [29] uses statistics of training data 13 

to normalize test data. However, if we combine the different subjects’ data with different 14 

distributions as a whole training set, the obtained statistics will not precisely represent any 15 

subject. This combination could lead to the potential risk of not obtaining desired compatible 16 

features. Therefore, we consider the problem in an opposite direction: leveraging on the 17 

subject-specific information. [30] and [31] exploited the small part of test subject data with 18 

label information to select source subjects for training. However, in practice, the test subject is 19 

totally unknown during training. [32] did not use label information and transformed the resting-20 

state of the EEG signals into a frequency domain. The power spectral density (PSD) features 21 

were computed. The authors then computed the similarity by applying the cosine distance on 22 

the obtained features. However, extracting and selecting proper features for various tasks are 23 

complicated and time-consuming. In our work, we exploit domain-specific batch normalization 24 

(DSBN). DSBN uses specific batch normalization statistics for each known domain to 25 
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independently align source and target distributions, which was first introduced in image 1 

processing [33, 34]. Multi-source DSBN has recently been exploited in domain adaptation [35] 2 

and domain generalization [36, 37]. In domain generalization, the relationship between BN and 3 

instance normalization (IN) statistics is exploited. When performing style transfer, BN and IN 4 

are combined into a new normalization parameter or used to map the source and target domains 5 

in a shared latent space. In our work, we find that BN can effectively reduce subject variability. 6 

We propose a simple but efficient subject matching framework which exploits subject-7 

specific statistics and selects the similar subjects’ network outputs dynamically and adaptively. 8 

Specifically, we replace the BN layer with a multi-source domain alignment layer and the 9 

remaining network shares the weights. During training, the domain-specific BN statistics (BNS) 10 

of source domains are extracted and stored. During testing, same BN statistics of the target 11 

domain is computed. Then, a reciprocal exponential function is applied to the distance between 12 

BNS of both domains to obtain the similarity. Finally, we use the similarity to weight the output 13 

from each source domain to obtain the recognition result of the target domain. The 14 

contributions of our work are summarized as follows: 15 

• We propose a novel subject matching framework that automatically match the test 16 

subject to the most similar training subjects. 17 

• We find that BN statistics is reliable to reduce subject-variability and remove 18 

incompatible information of different subjects. 19 

• We use a reciprocal exponential function to select similar training subjects during 20 

testing. 21 
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2. Materials and methods 1 

2.1 Problem Formulation and Notation 2 

Let 𝒳 be the input space (e.g., EEG signals) and 𝒴 the output space (e.g., EEG signal 3 

categories) of our learning task. In domain generalization, we have 𝑀 source domains: 𝒮 =4 

{𝑠𝑖}𝑖=1
𝑀  that are identified via probability distributions 𝑝𝑥𝑦

𝑠𝑖 = 𝑝(𝑦|𝑥, 𝑠𝑖), defined over 𝒳 × 𝒴, 5 

while the target domain is unknown. During training, we are provided with each source domain 6 

dataset 𝑠𝑖 = {(𝓍1
𝑠𝑖 , 𝑦1

𝑠𝑖), . . . , (𝓍𝑚
𝑠𝑖 , 𝑦𝑚

𝑠𝑖)} of i.i.d. observations from 𝑝𝑥𝑦
𝑠𝑖 . We leverage multiple 7 

source domains to learn a mapping (𝒳, 𝒮) → 𝒴 that can generalize to the target domain.  8 

Our main goal is to align the distributions of the target domain to source domains, i.e., 9 

correctly classifying the EEG signals in the target domain. When testing, the target dataset 𝒯 =10 

{𝓍1
𝑡, . . . , 𝓍𝑛

𝑡 } of i.i.d. observations is from the marginal 𝑝𝑥
𝑡 . We compute similarity between the 11 

target domain and each source domain. Then based on the conditional distribution {𝑝𝑥𝑦
𝑠𝑖 }𝑖=1

𝑀  of 12 

different branches, we combine the outputs as the final output for the target domain.  13 

We denote 𝐹(∙) as the output of a forward pass in the model. For the source domain, the 14 

classification model is trained using the standard supervised loss [22]: 15 

ℒ𝑐𝑙𝑠 = 𝔼(𝑥𝑠,𝑦𝑠)~(𝒳,𝒴) (− ∑ 𝟙[𝑖=𝑦𝑠]𝑙𝑜𝑔𝐹(𝑥𝑠)

𝑚

𝑖=1

) (1.) 16 

2.2 Multi-Source Domain Alignment Layer 17 

BN [29] was originally designed to alleviate the issue of internal covariate shifting which 18 

is a common problem while training a very deep neural network. The function of a BN layer 19 

can be described as: For activations within a mini-batch of 𝑁  samples, it first performs 20 

whitening among activations, and then learns affine parameters 𝛾 and 𝛽, which transform the 21 

inherent mean and variance to trainable variables. Denote input of a BN layer of each channel 22 

as 𝑥 ∈ ℝ𝑁×𝐻×𝑊, where 𝐻 × 𝑊 is the size of a 2D feature map. The BN layer is expressed as: 23 
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𝐵𝑁(𝑥; 𝛾, 𝛽) = 𝛾 ∙ �̂� + 𝛽, (2.) 1 

where 2 

�̂� =
𝑥 − 𝜇

√𝜎2 + 𝜀
, (3.) 3 

where 𝜀 > 0 is a small constant to avoid numerical issues in case of zero variance. We use 4 

𝑥[𝑛, ℎ, 𝑤] to express the value of a single element of the feature map. The mean and variance 5 

of activations within a mini-batch, 𝜇 and 𝜎2, are computed by: 6 

𝜇 =
1

𝑁 × 𝐻 × 𝑊
∑ ∑ 𝑥[𝑛, ℎ, 𝑤]

ℎ,𝑤𝑛
(4.) 7 

𝜎2 =
1

𝑁 × 𝐻 × 𝑊
∑ ∑ (𝑥[𝑛, ℎ, 𝑤] − 𝜇)2

ℎ,𝑤𝑛
(5.) 8 

During training, the BN layer also estimates the mean and variance of the entire activations 9 

by using an exponentially weighted moving average (EWMA) [38]. Formally, in 𝑡𝑡ℎ step, the 10 

moving mean  𝜇 and moving variance �̃�2 are updated by using an attenuation factor 𝛼: 11 

𝜇𝑡+1 = (1 − 𝛼)�̃�𝑡 + 𝛼𝜇𝑡+1 (6.) 12 

(�̃�𝑡+1)2 = (1 − 𝛼)(�̃�𝑡)2 + 𝛼(𝜎𝑡+1)2 (7.) 13 

Here, some relationship between the attenuation factor and the number of update steps is 14 

introduced: when 𝛼 = 0.9, the moving average can be approximated to the weighted average 15 

of the latest 10 updates. 𝛼 = 0.98  corresponds to latest 50 updates, while 𝛼 = 0.99 16 

corresponds to latest 100 updates. 17 

In our work, a multi-source domain alignment layer [35, 39] is employed, which is to 18 

separate the single BN layer to a set of BN branches corresponding to different source domains. 19 

Figure 1 shows the architecture of our model and illustrates the replacement of the BN layers 20 

by multi-source domain alignment layers. We adopt EEGNET [40] as the backbone network 21 

of our framework. Firstly, a 2D convolutional layer is fitted with the filter length to be half of 22 

the sampling rate, which allows for capturing frequency information at 2 Hz and above. 23 
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Secondly, depthwise convolution is used to learn a spatial filter. Then, a separable convolution 1 

is exploited, which is a combination of depthwise convolution and pointwise convolutions. 2 

Depthwise convolution learns a temporal summary for each feature map individually, followed 3 

by a pointwise convolution which learns how to optimally mix the feature maps together. 4 

Separable convolution reduces the number of parameters to fit. In our ensemble model, every 5 

network shares all the weights except the multi-source domain alignment layers. Then, each 6 

domain has its own specific affine parameters and BN statistics. Formally, we reformulated the 7 

equation (1)-(6) as: 8 

𝐵𝑁𝑠(𝑥𝑠; 𝛾𝑠, 𝛽𝑠) = 𝛾𝑠 ∙ �̂�𝑠 + 𝛽𝑠 (8.) 9 

where 𝑥𝑠 is the input activations at each channel of the branch of source domain 𝑠. 10 

�̂�𝑠 =
𝑥𝑠 − 𝜇𝑠

√𝜎𝑠
2 + 𝜀

(9.) 11 

Domain-specific mean and variance is obtained by: 12 

𝜇𝑠 =
1

𝑁 × 𝐻 × 𝑊
∑ ∑ 𝑥𝑠[𝑛, ℎ, 𝑤]

ℎ,𝑤𝑛
(10.) 13 

𝜎𝑠
2 =

1

𝑁 × 𝐻 × 𝑊
∑ ∑ (𝑥𝑠[𝑛, ℎ, 𝑤] − 𝜇𝑠)2

ℎ,𝑤𝑛
(11.) 14 

Domain-specific moving mean and moving variance is computed by: 15 

𝜇𝑠
𝑡+1 = (1 − 𝛼)�̃�𝑠

𝑡 + 𝛼𝜇𝑠
𝑡+1 (12.) 16 

(�̃�𝑠
𝑡+1)2 = (1 − 𝛼)(�̃�𝑠

𝑡)2 + 𝛼(𝜎𝑠
𝑡+1)2 (13.) 17 

In conclusion, after training using the source domain dataset, for each domain-specific 18 

branch of the BN layer, we have individual affine parameters (𝛾𝑠, 𝛽𝑠) and BN statistics (𝜇𝑠, �̃�𝑠
2). 19 

Moreover, with the replacement of the BN layers by multi-source domain alignment layers, the 20 

model 𝐹(∙) is transformed to {𝐹𝑠(∙)}𝑠∈𝒮. 21 

The multi-source domain alignment layer extracts BN statistics of each source domain 22 

which remove the influence of the incompatible information and normalizes the target domain 23 
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using specific statistics of each branch. This variant BN layer can make the target domain data 1 

clearly align to each source domain, avoiding the alignment to the whole source domain which 2 

may have poor classification performance. Therefore, a model with the multi-source domain 3 

alignment layer is a suitable structure to alleviate the subject variability problem. When testing, 4 

the target domain data will separately flow through every branch and be combined to a final 5 

output. However, how the target domain is related to multiple source domains and how do we 6 

deal with possible noisy samples? Based on the BN statistics, we will give a detailed 7 

introduction in next subsection. 8 

2.3 Subject Matching 9 

There are a lot of differences in EEG signals, especially across different subjects, because 10 

of the influence of other mental states, emotional condition, and task-irrelevant brain activity 11 

disturbance mentioned in Section 1. The data distributions of some source subjects are more 12 

similar to the test subject compared to the other source subjects. Then the subjects with poor 13 

similarity should be declined. The specific process is as follows. 14 

Computing Similarity The multi-source domain alignment layer is derived from the 15 

original BN layer. As opposed to BN, the mDA layer computes the domain specific distribution 16 

𝑝𝑥→𝑦
𝑠 , separating the BN layer of integral 𝐹(∙) to a branched BN with {𝐹𝑠(∙)}𝑠∈𝒮. Although this 17 

ensemble model can explicitly and concisely embody the distribution of each source domain, 18 

the generalization ability of each branch or even the entire network to an unknown target 19 

domain is still a question. During testing, we employ the 2-Wasserstein distance to compute 20 

the similarity between each source domain and the target domain. We select source domains 21 

by exploiting the reciprocal exponential function. The resulting target domain classification 22 

probabilities is a weighted mixture of the output of more similar source domains branches. 23 

 24 
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 1 

 2 

 3 

 4 

Figure 1. Our multi-source EEGNET architecture. (a) and (b) illustrates the replacement of the 5 

original BN layer by a multi-source domain alignment (mDA) layer (in the dashed boxes).  6 

 7 

Let 𝑙 ∈ ℬ = {1,2, . . . , 𝐿} represents the different BN layers in the network. Then we define 8 

a latent representation space ℋ across source domains. Specifically, we have ℋ𝑙 in 𝑙𝑡ℎ layer, 9 

(a) EEGNET 

(b) Multi-source EEGNET 
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which map the population statistics of target domain (�̃�𝑡
𝑙 , (�̃�𝑡

𝑙)2) to the counterpart of source 1 

domain (�̃�𝑠
𝑙 , (�̃�𝑠

𝑙)2). The BNS of all BN layers in the source domains are combined as: 2 

𝐵𝑁𝑆𝑠 = [(𝜇𝑠
1, �̃�𝑠

1), (�̃�𝑠
2, �̃�𝑠

2), … , (𝜇𝑠
𝐿 , �̃�𝑠

𝐿)] (14.) 3 

During testing, we first pass the testing data through the network, and then extract the 4 

population statistics of the target domain from each BN layer. Finally, we combine them 5 

similarly as:  6 

𝐵𝑁𝑆𝑡 =  [(𝜇𝑡
1, �̃�𝑡

1), (𝜇𝑡
2, �̃�𝑡

2), … , (𝜇𝑡
𝐿 , �̃�𝑡

𝐿)] (15.) 7 

Then we evaluate the similarity between 𝐵𝑁𝑆𝑠  and 𝐵𝑁𝑆𝑡  by computing the distance 8 

between the two points projected from both the source domain and the target domain. We 9 

assume that the input activations of each BN layer follow the Gaussian distribution: 10 

𝑧~𝒩(�̃�𝑙, �̃�𝑙)  and the similarity measure can be specified as the distance between two 11 

multivariate Gaussian distributions. We compute the 2-Wasserstein distance between 12 

𝑞𝑠~𝒩(𝜇𝑠
𝑙 , �̃�𝑠

𝑙) and 𝑞𝑡~𝒩(𝜇𝑡
𝑙 , �̃�𝑡

𝑙), corresponding to the activation distributions of the source 13 

domain and the target domain, respectively, where �̃�𝑡
𝑙 represents the covariance matrix. 14 

𝑊2(𝑞𝑠, 𝑞𝑡) = ‖𝜇𝑠
𝑙 − 𝜇𝑡

𝑙‖
2

2
+ 𝑇𝑟(�̃�𝑠

𝑙 + �̃�𝑡
𝑙 − 2[(�̃�𝑠

𝑙)1/2�̃�𝑡
𝑙(�̃�𝑠

𝑙)1/2]1/2) 15 

= ‖𝜇𝑠
𝑙 − 𝜇𝑡

𝑙‖
2

2
+ 𝑇𝑟 ((Σ̃𝑠

𝑙 )
1/2

− (Σ̃𝑡
𝑙)

1/2
)2)   (16.) 16 

where 𝑇𝑟(∙) is the trace of the matrix.  17 

Source Subject Selection Now, we want to select appropriate source subjects and eliminate 18 

the impact of subjects with large distances to the distribution of the target subject. Therefore, 19 

we propose to use reciprocal of exponential function to transform the distance to similarity. 20 

The result of the reciprocal exponential function with a large distance approaches zero, which 21 

can effectively eliminate the negative contribution. Once we obtain the distance measure of 22 

both domains, the similarities are computed by applying the exponential on the distance and 23 
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we can obtain 𝑒𝑑𝑠 , where 𝑑𝑠 = 𝑊2(𝑞𝑠, 𝑞𝑡) . We define the similarity 𝑟𝑠,𝑡  between source 1 

domain 𝑠 and target domain 𝑡 as: 2 

𝑟𝑠,𝑡 =

1
𝑒𝑑𝑠

∑
1

𝑒𝑑𝑠𝑠∈𝒮

(17.) 3 

The exponential function can effectively detect the subjects with large distance. To avoid 4 

the exponential computation of some large distances, we set 50 as the distance threshold. If 5 

distances are larger than 50, we set the result of reciprocal exponential function to zero. If all 6 

distances are larger than 50, we only use the most similar (1-nearest) subject data to compute 7 

the final result. After the selection of useful subjects, we can obtain the output distribution of 8 

the model on the target domain by weighted combination of the outputs of all branches. 9 

𝑝𝑡 = ∑ 𝑟𝑠,𝑡𝑝𝑥𝑦
𝑠

𝑠∈𝒮
(18.) 10 

3. Experiments 11 

3.1 Experiment Settings 12 

Data Preparation We use an open driving dataset in our experiments, which was collected 13 

during 2005-2012 and released in 2019 [41]. The dataset comprises 62 EEG datasets of 27 14 

subjects (aged between 22-28) who were students or staff at National Chiao Tung University 15 

in Taiwan. The EEG signals were recorded in 32 channels (30 valid channels plus 2 reference 16 

channels), with a sampling frequency of 500Hz. We further down-sample the data to 128Hz.  17 

In the experiment, lane-departure events were randomly induced to make the car drift from 18 

the original cruising lane towards the left or right sides (deviation onset). Each participant was 19 

instructed to quickly compensate for this perturbation by steering the wheel (response onset) 20 

to cause the car to move back to the original cruising lane (response offset). A complete trial 21 

included events with deviation onset, response onset, and response offset. 22 
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In our study, fatigue-related SA is analysed. We follow the fatigue labels of the data set 1 

because the fatigue and non-fatigue data were labelled according to the reaction time on the 2 

repeated lane-departure event that corresponds to the definition of high and low SA [42, 43]. 3 

Specifically, we extract 3 seconds EEG data prior to the deviation onset as a measure of 4 

subject's SA before the start of the trial. Since the subjects’ states cannot be specified before 5 

the response onset, that is, the data may mix both high and low SA, we did not use the EEG 6 

data between deviation onset and response onset. We apply the method described in [41] to 7 

extract SA related data as follows. We set SA labels based on the reaction time (RT), which is 8 

the length of the interval between the deviation onset and response onset. Additionally, global 9 

RT was defined as the average of local RTs across all epochs within a 90-second window 10 

before the deviation onset. The baseline alert-RT was defined as the 5th percentile of local RT 11 

in the entire session. The label process is as follows. When both the local and global RT are 12 

shorter than 1.5 times the alert-RT, the corresponding extracted EEG data is labelled as “low 13 

SA”, and when both the local and global RT are longer than 2.5 times the alert-RT, the data is 14 

labelled as “high SA”. Transitional states with moderate performance are excluded and the 15 

neutral state is not considered in this work. To ensure sufficient samples of data for training 16 

the model, we filter the datasets such that the dataset of each subject should have at least 50 17 

samples of both states. For the subjects that have multiple datasets, we select the most balanced 18 

one to perform the filter operation. Finally, we obtain a whole balanced SA dataset which 19 

includes 11 subjects’ 1674 samples data. The data size of one sample is 30 (channels) ×384 20 

(sample points). The number of samples for each subject is shown in Table 1.  21 

Table 1 Situation awareness dataset content 22 

Subject ID Subject Index 
Number of Samples 

High SA Low SA 

1 0 94 94 

5 1 66 66 

22 2 75 75 

31 3 74 74 

35 4 112 112 
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41 5 83 83 

42 6 51 51 

43 7 132 132 

44 8 157 157 

45 9 54 54 

53 10 113 113 

Total 837 837 

 1 

Implementation Details We follow [40] to set the parameters of EEGNET. Unlike the 2 

most previous works [19, 44] which inputted the extracted features to the network with the 3 

purpose of reducing the impact of noise, we use only the raw data as the input. The main 4 

difference is that extracted features limit EEG information, for instance, PSD features limit the 5 

EEG information to only the frequency domain but discard certain temporal information. The 6 

input data of the model is in the form 30 (channels) ×384 (sample points). We randomly choose 7 

one subject as the validation set, one subject as the test set and all remaining subjects as the 8 

training set. The batch size is set to 50 EEG samples for each source domain. Adam [45] is 9 

used to optimize the network parameters with 𝛽1 = 0.9, 𝛽2 = 0.999. The learning rate is set to 10 

0.001. For BN blocks in multi-source domain alignment layers, based on the relationship 11 

between the attenuation factor and the number of update steps introduced in Section 2.1, we 12 

set 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9. 13 

3.2 Cross-Subject SA Recognition Results   14 

In the experiment, we evaluate the classification accuracy and other performance metrics 15 

using leave-one-subject-out cross-validation. First, we compare our method with a traditional 16 

model, i.e., the support vector machine (SVM) [46], as well as state-of-the-art algorithms, 17 

including EEGNET, Domain Adversarial Neural Network (DANN) [21], TCA [24] and MIDA 18 

[47]. For SVM, TCA and MIDA, we extract the PSD features as inputs. We also include 19 

AdaBN [34] in the comparisons. To the best of our knowledge, this is the first time to apply 20 

AdaBN on EEG-based SA recognition. Secondly, we evaluate our approach based on the 21 
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confusion matrix. The overall confusion matrix is obtained by adding the confusion matrix of 1 

each single validation. Precision, Sensitivity, Specificity and F1 score are further computed.  2 

The comparison results are presented in Table 2. We apply one-way ANOVA [48] to 3 

analyse the significance of the differences in the results. Significant difference over the 4 

accuracy of models is observed: 𝐹(6,70) = 3.81, 𝑝 < 0.005. Overall, our method achieves the 5 

best average accuracy among these methods. From Table 2, we can observe that the 6 

replacement of BN layers by multi-source domain alignment layers significantly improves the 7 

performance of the backbone EEGNET by approximately 15%. Compared with AdaBN, a 8 

domain adaptation technique which uses target domain statistics to update the BN statistics, 9 

our method has a comparable accuracy and no significant difference is observed. The 10 

comparison results demonstrate that the subject-specific normalization and subject matching 11 

can indeed be beneficial for reducing subject variability. The mixture of all training subjects as 12 

source domain could mislead the model to learn biased statistics of each activation and cannot 13 

precisely represent any subject. 14 

Table 2 Leave-one-subject-out cross-validation accuracy. Methods with * use PSD features 15 

as inputs, whereas other methods use raw data as inputs (%). 16 

Subject Index 0 1 2 3 4 5 6 7 8 9 10 Avg. Std. 

EEGNET [40] 57.08 59.16 59.07 56.24 57.57 55.31 58.01 54.16 59.12 73.72 59.51 59.00 5.18 

DANN [21] 67.41 68.79 68.03 69.62 62.00 68.50 66.38 68.36 69.71 74.13 72.29 68.66 2.97 

SVM* [46] 79.26 71.97 66.67 65.54 82.59 74.10 60.78 65.15 88.22 71.30 62.83 71.67 8.31 

TCA* [24] 90.43 53.03 70.67 72.97 79.91 78.31 63.73 68.94 81.85 83.33 61.50 73.15 10.97 

MIDA* [25] 80.32 59.09 80.67 77.03 82.14 76.51 51.96 71.97 87.26 85.19 55.31 73.40 12.35 

AdaBN [34] 73.68 55.56 83.33 90.00 82.29 79.41 66.67 75.47 85.71 54.54 67.39 74.00 11.81 

Subject matching 78.72 68.18 79.33 68.24 85.27 83.73 64.71 57.20 78.03 82.41 71.68 74.32 8.94 

 17 

We compare other performance metrics with state-of-the-art methods: MIDA and TCA. 18 

Table 3-5 show the confusion matrices of TCA, MIDA and subject matching method, 19 

respectively. The performance measures based on the given tables are shown in Table 6. Better 20 

F1 score (0.7628) demonstrates that the proposed subject matching framework achieves the 21 

best overall performance among these three methods. Superior sensitivity result reveals that 22 
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our approach can effectively capture samples with good performance and is useful for SA 1 

training. In practice, we prefer to train operators to maintain a high SA state. 2 

Table 3 Confusion matrix for 2-way classification using TCA 3 

 
True Class 

High SA Low SA 

Predicted 

Class 

High SA 742 256 

Low SA 269 755 

Table 4 Confusion matrix for 2-way classification using MIDA 4 

 
True Class 

High SA Low SA 

Predicted 

Class 

High SA 764 269 

Low SA 247 742 

 5 

Table 5 Confusion matrix for 2-way classification using our subject matching method 6 

 
True Class 

High SA Low SA 

Predicted 

Class 

High SA 838 348 

Low SA 173 663 

 7 

Table 6 Comparison of performance measures with state-of-the-art methods 8 

 Precision (%) Sensitivity (%) Specificity (%) F1 Score 

TCA [24] 74.35 73.39 74.68 0.7387 

MIDA [25] 73.96 75.57 73.39 0.7476 

Subject matching 70.66 82.89 65.58 0.7628 

 9 

3.3 Ablation Study  10 

We compare our similarity measure function with other functions. The results are 11 

presented in Table 7. For arithmetic mean function, similarity 𝑟𝑠,𝑡 =
1

𝑀
, where 𝑀 is the number 12 

of source domains. For reciprocal function, similarity 𝑟𝑠,𝑡 =

1

𝑑𝑠

∑
1

𝑑𝑠
𝑠∈𝒮

. Then we can obtain the 13 

results of using these functions by applying equation (18). The reciprocal exponential function 14 

is proved to be a more reliable choice. 15 

According to the ablation experiment results shown in Table 7, the arithmetic mean of 16 

multi-source EEGNET achieves an accuracy of 72.87% which is better than the accuracy of 17 
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EEGNET (59%), which demonstrates the effectiveness of the subject-specific batch 1 

normalization. On the other hand, the accuracy of using the arithmetic mean as the similarity 2 

measure function is 72.87%, while the accuracy of our subject matching method can achieve 3 

74.31%. Although simple reciprocal can also reduce the impact of the subjects with negative 4 

contribution, there are still negative contributes from them. The comparisons demonstrate the 5 

validity of the proposed subject matching method.  6 

Table 7 Comparison of different similarity measure functions (%) 7 

Subject Index 0 1 2 3 4 5 6 7 8 9 10 Avg. 

Arithmetic 

Mean 
71.81 67.42 72.00 72.97 85.26 83.13 64.71 66.67 73.89 77.78 65.93 72.87 

Reciprocal 72.87 75.00 62.67 77.70 71.43 86.14 62.75 70.08 86.31 77.78 69.47 73.83 

Reciprocal 

Exponential 
78.72 68.18 79.33 68.24 85.27 83.73 64.71 57.20 78.03 82.41 71.68 74.32 

 8 

3.3 Effect of Different Number of the Nearest Subjects 9 

We perform a comparison experiment on our framework to analyse the effect of different 10 

number of nearest subjects. Figure 2 shows the arithmetic average results of different number 11 

of nearest subjects. The overall results show an increasing trend until using 4-nearest outputs, 12 

then decreases to 72.87% finally. Although the distances between source subjects’ data and 13 

target subject data are obtained, it is still a question that the proper number of the nearest source 14 

subjects that can achieve a good performance. For ours, subject matching results of different 15 

number of nearest subjects are shown in Figure 3. We can observe that the results show an 16 

upward trend. This comparison demonstrates that the use of reciprocal exponential function 17 

benefits to reserve the useful branches output. In addition, the computed similarity can directly 18 

show the useful number of the nearest source subjects (the number of branches with non-zero 19 

similarities). 20 
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 1 

Figure 2. Arithmetic average results of different number of nearest subjects 2 

 3 

Figure 3. Subject matching results of different number of nearest subjects 4 

4. Conclusion 5 

We have presented a study on the effectiveness of our subject matching framework on the 6 

driving dataset using leave-one-subject-out cross validation. There are two main points that 7 

benefits to the performance: 1) Subject-specific consideration. In previous EEG processing 8 

works in related fields, researchers usually considered different training subjects as a whole 9 

source domain, while ignoring the subject-specific characteristics. In our work, we tackle this 10 
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problem by employing a multi-source domain alignment layer to exploit the information which 1 

are usually overlooked. Based on the experiment results, features normalized by statistics from 2 

similar source subjects can be classified more accurately. 2) We find that batch normalization 3 

is a reliable way in EEG processing to alleviate subject variability effect based on the 4 

observations in our experiments. However, limiting the number of source domain subjects 5 

could restrict the generalization ability of the model trained only on the source domain to some 6 

extent.  7 

The proposed subject matching is a convenient and efficient technique to evaluate SA and 8 

obtain similarity between target subjects and source subjects. Similar subjects’ data is useful 9 

and beneficial in EEG-based recognition tasks [30-32]. The similarity information can be 10 

further exploited to find subject-invariant representatives and improve the recognition 11 

performance. In practice, our approach can be applied for operator’s training in dynamic 12 

systems. The operator’s SA patterns can be analysed efficiently by simply applying the pre-13 

trained model on the trained operators. 14 

In this paper, we present a study of subject matching for cross-subject recognition of driver 15 

state related to situation awareness. Domain generalization technique is applied in our work. 16 

Firstly, the BN layers in the model are replaced with multi-source domain alignment layers 17 

which help to generalize the model trained on the source domain to the target domain by 18 

performing the domain-specific normalization. Secondly, during testing, we compute the 19 

similarities between the target subject and each source subject by exploiting BN statistics. The 20 

source subjects similar to the target subject are found by applying a reciprocal exponential 21 

function. Our proposed framework outperforms the state-of-the-art techniques on a popular 22 

driving dataset. The framework is designed to adaptively select better matched subjects in the 23 

source domains for the target subject based on statistics, which can be applied in any EEG-24 

based cross-subject model with BN layers. In the future, more generalized algorithms based on 25 
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BN statistics can be investigated, which would be beneficial to the improvement of cross-1 

subject EEG-based mental states recognition. 2 

Acknowledgment: 3 

This research is supported by the National Research Foundation, Singapore under its 4 

International Research Centres in Singapore Funding Initiative. Any opinions, findings and 5 

conclusions or recommendations expressed in this material are those of the author(s) and do 6 

not reflect the views of National Research Foundation, Singapore. 7 

References: 8 

[1] M. R. Endsley, "Measurement of situation awareness in dynamic systems," Human factors, vol. 9 
37, no. 1, pp. 65-84, 1995. 10 

[2] H. Wei, D. Zhuang, X. Wanyan, and Q. Wang, "An experimental analysis of situation 11 
awareness for cockpit display interface evaluation based on flight simulation," Chinese Journal 12 
of Aeronautics, vol. 26, no. 4, pp. 884-889, 2013. 13 

[3] C. M. Muehlethaler and C. P. Knecht, "Situation awareness training for general aviation pilots 14 
using eye tracking," IFAC-PapersOnLine, vol. 49, no. 19, pp. 66-71, 2016. 15 

[4] T. Nguyen, C. P. Lim, N. D. Nguyen, L. Gordon-Brown, and S. Nahavandi, "A Review of 16 
Situation Awareness Assessment Approaches in Aviation Environments," IEEE Systems 17 
Journal, vol. 13, no. 3, pp. 3590-3603, 2019. 18 

[5] J. Luo, Z. Feng, J. Zhang, and N. Lu, "Dynamic frequency feature selection based approach for 19 
classification of motor imageries," Computers in biology and medicine, vol. 75, pp. 45-53, 2016. 20 

[6] R. L. Li, Z. R. Lan, J. Cui, O. Sourina, and L. P. Wang, "EEG-based Recognition of Driver 21 
State Related to Situation Awareness Using Graph Convolutional Networks," in 2020 22 
International Conference on Cyberworlds (CW), 2020, pp. 180-187: IEEE. 23 

[7] D. J. Hemanth, J. Anitha, and L. H. Son, "Brain signal based human emotion analysis by 24 
circular back propagation and Deep Kohonen Neural Networks," Computers & Electrical 25 
Engineering, vol. 68, pp. 170-180, 2018. 26 

[8] J. A. M. Saucedo, J. D. Hemanth, and U. Kose, "Prediction of electroencephalogram time series 27 
with electro-search optimization algorithm trained adaptive neuro-fuzzy inference system," 28 
IEEE Access, vol. 7, pp. 15832-15844, 2019. 29 

[9] M. K. Chowdary and D. J. Hemanth, "Emotion Recognition Using Feature Extraction 30 
Techniques," Information Technology and Intelligent Transportation Systems, vol. 323, p. 71, 31 
2020. 32 

[10] M. K. Chowdary, D. J. Hemanth, A. Angelopoulou, and E. Kapetanios, "Feature extraction 33 
techniques for human emotion identification from face images," in 9th International 34 
Conference on Imaging for Crime Detection and Prevention (ICDP-2019), London, UK, 2019, 35 
pp. 86-92. 36 

[11] M. Flynn, D. Effraimidis, A. Angelopoulou, E. Kapetanios, D. Williams, J. Hemanth, and T. 37 
Towell, "Assessing the Effectiveness of Automated Emotion Recognition in Adults and 38 
Children for Clinical Investigation," Frontiers in human neuroscience, vol. 14, 2020. 39 

[12] M. K. Chowdary and D. J. Hemanth, "Human emotion recognition using intelligent approaches: 40 
A review," Intelligent Decision Technologies, vol. 13, no. 4, pp. 417-433, 2019. 41 



 
20 

 

[13] W. L. Lim, O. Sourina, and L. P. Wang, "Cross Dataset Workload Classification Using Encoded 1 
Wavelet Decomposition Features," in 2018 International Conference on Cyberworlds (CW), 2 
2018, pp. 300-303: IEEE. 3 

[14] S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Mekhtiche, and M. S. Hossain, "Deep 4 
Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion," 5 
Future Generation computer systems, vol. 101, pp. 542-554, 2019. 6 

[15] J. Li, S. Qiu, C. Du, Y. Wang, and H. He, "Domain Adaptation for EEG Emotion Recognition 7 
Based on Latent Representation Similarity," IEEE Transactions on Cognitive and 8 
Developmental Systems, 2019. 9 

[16] Y. Luo, S.-Y. Zhang, W.-L. Zheng, and B.-L. Lu, "WGAN domain adaptation for EEG-based 10 
emotion recognition," in International Conference on Neural Information Processing, 2018, pp. 11 
275-286: Springer. 12 

[17] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, "Analysis of representations for domain 13 
adaptation," in Advances in neural information processing systems, 2007, pp. 137-144. 14 

[18] J. Gu and R. Kanai, "What contributes to individual differences in brain structure?," Frontiers 15 
in human neuroscience, vol. 8, p. 262, 2014. 16 

[19] B.-Q. Ma, H. Li, Y. Luo, and B.-L. Lu, "Depersonalized Cross-Subject Vigilance Estimation 17 
with Adversarial Domain Generalization," in 2019 International Joint Conference on Neural 18 
Networks (IJCNN), 2019, pp. 1-8: IEEE. 19 

[20] Y. Ganin and V. Lempitsky, "Unsupervised domain adaptation by backpropagation," in 20 
International conference on machine learning, 2015, pp. 1180-1189: PMLR. 21 

[21] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and 22 
V. Lempitsky, "Domain-adversarial training of neural networks," The Journal of Machine 23 
Learning Research, vol. 17, no. 1, pp. 2096-2030, 2016. 24 

[22] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, "Adversarial discriminative domain 25 
adaptation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 26 
2017, pp. 7167-7176. 27 

[23] M. Long, Z. Cao, J. Wang, and M. I. Jordan, "Conditional adversarial domain adaptation," in 28 
Advances in neural information processing systems, 2018, pp. 1640-1650. 29 

[24] Z. Lan, O. Sourina, L. P. Wang, R. Scherer, and G. R. Müller-Putz, "Domain adaptation 30 
techniques for EEG-based emotion recognition: a comparative study on two public datasets," 31 
IEEE Transactions on Cognitive and Developmental Systems, vol. 11, no. 1, pp. 85-94, 2018. 32 

[25] Y. Liu, Z. Lan, J. Cui, O. Sourina, and W. Müller-Wittig, "Inter-subject transfer learning for 33 
EEG-based mental fatigue recognition," Advanced Engineering Informatics, vol. 46, p. 101157, 34 
2020. 35 

[26] F. Qiao, L. Zhao, and X. Peng, "Learning to learn single domain generalization," in Proceedings 36 
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12556-37 
12565. 38 

[27] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales, "Learning to generalize: Meta-learning for 39 
domain generalization," in Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 40 
vol. 32, no. 1. 41 

[28] F. M. Carlucci, A. D'Innocente, S. Bucci, B. Caputo, and T. Tommasi, "Domain generalization 42 
by solving jigsaw puzzles," in Proceedings of the IEEE Conference on Computer Vision and 43 
Pattern Recognition, 2019, pp. 2229-2238. 44 

[29] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing 45 
internal covariate shift," in International conference on machine learning, 2015, pp. 448-456: 46 
PMLR. 47 

[30] W. Wei, S. Qiu, X. Ma, D. Li, B. Wang, and H. He, "Reducing Calibration Efforts in RSVP 48 
Tasks With Multi-Source Adversarial Domain Adaptation," IEEE Transactions on Neural 49 
Systems and Rehabilitation Engineering, vol. 28, no. 11, pp. 2344-2355, 2020. 50 

[31] F. Wang, W. Zhang, Z. Xu, J. Ping, and H. Chu, "A deep multi-source adaptation transfer 51 
network for cross-subject electroencephalogram emotion recognition," Neural Computing and 52 
Applications, pp. 1-13. 53 



 
21 

 

[32] E. Jeon, W. Ko, and H.-I. Suk, "Domain Adaptation with Source Selection for Motor-Imagery 1 
based BCI," in 2019 7th International Winter Conference on Brain-Computer Interface (BCI), 2 
2019, pp. 1-4: IEEE. 3 

[33] F. M. Carlucci, L. Porzi, B. Caputo, E. Ricci, and S. R. Bulo, "Autodial: Automatic domain 4 
alignment layers," in 2017 IEEE international conference on computer vision (ICCV), 2017, 5 
pp. 5077-5085: IEEE. 6 

[34] Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu, "Adaptive batch normalization for practical domain 7 
adaptation," Pattern Recognition, vol. 80, pp. 109-117, 2018. 8 

[35] W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han, "Domain-specific batch normalization for 9 
unsupervised domain adaptation," in Proceedings of the IEEE Conference on Computer Vision 10 
and Pattern Recognition, 2019, pp. 7354-7362. 11 

[36] M. Segù, A. Tonioni, and F. Tombari, "Batch Normalization Embeddings for Deep Domain 12 
Generalization," arXiv preprint arXiv:2011.12672, 2020. 13 

[37] S. Seo, Y. Suh, D. Kim, G. Kim, J. Han, and B. Han, "Learning to Optimize Domain Specific 14 
Normalization for Domain Generalization," Cham, 2020, pp. 68-83: Springer International 15 
Publishing. 16 

[38] M. Nounou, B. R. Bakshi, and B. Walczak, Multiscale methods for denoising and compression. 17 
Elsevier Science BV, 2000. 18 

[39] M. Mancini, L. Porzi, S. Rota Bulò, B. Caputo, and E. Ricci, "Boosting domain adaptation by 19 
discovering latent domains," in Proceedings of the IEEE Conference on Computer Vision and 20 
Pattern Recognition, 2018, pp. 3771-3780. 21 

[40] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, 22 
"EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces," 23 
Journal of neural engineering, vol. 15, no. 5, p. 056013, 2018. 24 

[dataset] [41] Z. Cao, C.-H. Chuang, J.-K. King, and C.-T. Lin, "Multi-channel EEG recordings 25 
during a sustained-attention driving task," Scientific data, vol. 6, no. 1, pp. 1-8, 2019. https:// 26 
www.nature.com/articles/s41597-019-0027-4. 27 

[42] M. R. Endsley, "Automation and situation awareness," Automation and human performance: 28 
Theory and applications, vol. 20, pp. 163-181, 1996. 29 

[43] L. G. Yeo, H. Sun, Y. Liu, F. Trapsilawati, O. Sourina, C.-H. Chen, W. Mueller-Wittig, and W. 30 
T. Ang, "Mobile EEG-based situation awareness recognition for air traffic controllers," in 2017 31 
IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 3030-3035: 32 
IEEE. 33 

[44] R. F. Rojas, E. Debie, J. Fidock, M. Barlow, K. Kasmarik, S. Anavatti, M. Garratt, and H. 34 
Abbass, "Encephalographic Assessment of Situation Awareness in Teleoperation of Human-35 
Swarm Teaming," in International Conference on Neural Information Processing, 2019, pp. 36 
530-539: Springer. 37 

[45] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in 3rd International 38 
Conference on Learning Representations, 2015. 39 

[46] J. A. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural 40 
processing letters, vol. 9, no. 3, pp. 293-300, 1999. 41 

[47] Y. Liu, Z. Lan, J. Cui, O. Sourina, and W. Müller-Wittig, "EEG-Based Cross-Subject Mental 42 
Fatigue Recognition," in 2019 International Conference on Cyberworlds (CW), 2019, pp. 247-43 
252: IEEE. 44 

[48] R. G. Lomax, Statistical concepts: A second course. Lawrence Erlbaum Associates Publishers, 45 
2007. 46 

 47 


