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Abstract—This paper describes an open access 

electroencephalography (EEG) dataset for multitasking mental 

workload activity induced by a single-session simultaneous 

capacity (SIMKAP) experiment with 48 subjects. To validate the 

database, EEG spectral activity was evaluated with EEGLAB 

and the significant channels and activities for the experiment are 

highlighted. Classification performance was evaluated by 

training a support vector regression model on selected features 

from neighborhood component analysis based on a 9-point 

workload rating scale. With a reduced feature dimension, 69% 

classification accuracy was obtained for 3 identified workload 

levels from the rating scale with a Cohen’s kappa of 0.46. 

Accurate discrimination of mental workload is a desirable 

outcome in the field of operator performance analysis and BCI 

development, thus we hope that our provided database and 

analyses can contribute to future investigations in this research 

field.    

 
Index Terms—Electroencephalography (EEG), Mental 

Workload, Open Access Dataset 

 

I. INTRODUCTION 

HE goal of BCI research aims to provide an alternate 

pathway for users to communicate with devices. In 

particular, for an EEG based BCI, this is achieved through 

receiving EEG signals from the user’s brain, which should 

elicit a particular response from the device. To obtain the 

desired response, the processing algorithm has to be able to 

correctly identify and classify the user’s incoming brain signal 

such as the detection of the P300 in a BCI speller application 

[1]. Over the years, many experiments have been performed to 

develop state of the art processing algorithms that address this 

requirement of BCI [2-5]. While these studies provide well 

documented and advanced methods to process BCI data, most 

of these researches will often choose to validate their methods 
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with their own in-house experimental dataset, usually without 

releasing the data online. This is undesirable due to two main 

reasons.  

Firstly, it is difficult for other research groups to compare 

methods and reproduce the stated result if the original 

database is not provided.  In order to provide a workaround, 

studies usually replicate the methods used in a previous study 

on their own dataset to serve as a point of comparison [6-8]. 

To ensure a fair comparison, the proposed method should also 

be applied on the original referenced datasets, if the two 

classification contexts are similar. 

Secondly, it is resource intensive to conduct a large scale 

experiment with a sizable number of subjects. Also some 

research groups might not have the required manpower or 

resources to establish their own dataset. In order to validate 

their proposed algorithms, these studies often select a dataset 

from the EEG databases available for open access [9-11]. 

However, the current number of databases available is still 

small and should be expanded upon. 

Furthermore, although there are well established open 

access EEG datasets, each dataset might consider an explicit 

research area or different modalities and thus might not be 

applicable depending on a researcher’s area of study. For 

example the DEAP database is a dataset that considers the 

research area of emotional state [12] while the dataset 

provided in [13] considers multimodal BCI for a mental 

workload task and motor imagery. Therefore, it is important 

that the research community have access to a variety of 

databases to study. For our dataset, we aim to provide single 

session EEG data of forty-eight subjects performing 

multitasking mental workload activity. 

We have identified a growing need for the provision of a 

sizable, open access mental workload EEG dataset for BCI 

research. Thus, we would like to contribute our dataset toward 

this goal, with this paper serving as its documentation, 

providing information on the experimental setup, EEG 

baseline frequency analysis and classification performance.  

II. RELATED WORK 

A. Mental Workload 

Mental workload (MWL) is defined as the amount of 

mental or cognitive resources required to meet the current task 

demands [14]. A high MWL would mean that most or all 

cognitive resources have been utilized to perform the given 

task.   

The assessment of MWL is an important consideration in 
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the area of operator performance in order to avoid task errors 

due to the high workload or “overload” condition [15]. Being 

able to correctly recognize the MWL of an operator can 

enhance safety with practical BCI applications. For example, 

in the area of Air Traffic Management, a passive BCI solution 

can be implemented to automatically adjust task settings based 

on the workload of the operator [16].  

MWL is traditionally assessed with questionnaires such as 

the NASA Task load index (NASA-TLX) [17] or Subjective 

Workload Assessment Technique (SWAT) [18]. As these 

methods only provide subjective assessment of an operator’s 

workload, the current trend is to complement these ratings 

with physiological measurements using devices that measure 

bio-signals such as the EEG or fMRI [14].  

In order to properly assess MWL with such devices, there is 

a need to be able to recognize the workload level of the 

incoming signal, and this can be achieved with the use of 

various machine learning techniques [2, 3]. 

B. Experiments involving Mental Workload 

Experiments that assess MWL usually include one of two 

popular formats to induce workload. The first is that of a task 

battery, where subjects are to attend to several tasks appearing 

in two or more separate task windows. This format, which 

aims to increase MWL by means of multitasking, was first 

popularized by NASA’s Multi-Attribute Task Battery 

(MATB) [19, 20] with studies involving MWL using the 

MATB or similarly inspired task [21-26]. The second format 

is by using mental arithmetic to induce workload, with more 

complex arithmetic problems for a higher workload level [27-

32].  

While there are many studies that conduct experiments to 

induce MWL via EEG, there are few who release their 

datasets online for further study and validation by other 

groups. Although there are available datasets such as the BCI 

competition database and compilation websites [9, 10], the 

numbers of datasets related to MWL are still limited. A recent 

open access dataset that provides multi-modal EEG and near-

infrared spectroscopy (NIRS) recording of mental arithmetic 

and motor imagery data is also available for study [13]. 

Some limitations of the available datasets introduced above 

include one or a combination of the following. First, the 

datasets have relatively few subjects, usually less than 10, thus 

making it difficult to validate generalized MWL activity. 

Second, the selected subjects are non-uniform, i.e. the subjects 

are of different gender, age groups or education levels. These 

variables might adversely affect the uniformity of MWL EEG 

data collected. For example, as females have lighter skull 

structures, EEG collected would have higher potential 

compared to men. If age-groups and education levels are not 

consistent, subjects performing MWL tasks might display 

varying results based on individual competency; subjects with 

a higher education level might find it easier to perform 

complex arithmetic problems. These datasets are therefore 

more suited for subject-specific studies, or studies comparing 

individual differences. 

The proposed dataset aims to account for the discussed 

limitations by selecting male participants from a specific 

group. This allows for a uniform dataset where studies on 

general MWL EEG mechanisms across many subjects can be 

performed.   

C. Frequency Bands as Measure of Mental Workload 

There are unique characteristics specific to MWL activity 

found in previous studies, such as the sensitivity to alpha and 

theta EEG power spectral density (PSD). These are also 

popular features in EEG signal classification applications [24, 

27, 31]. 

Furthermore, given the prevalence of the frequency power 

bands in general EEG studies, we shall base the analysis of 

our dataset on them, as they provide a standard baseline 

measure in studying the underlying neural mechanisms of the 

EEG.  

III. METHODS AND MATERIALS 

A. Subjects 

Fifty male subjects from the university’s graduate 

population participated in this study. Recruitment was 

performed via open email and all subjects recruited declared to 

not have any neurological, psychiatric or brain related 

diseases. They also declared not to have taken part in any prior 

EEG experiment. Participants were informed of the 

experimental procedure and written consent was obtained. 

After the experiment, participants were provided monetary 

compensation for their time. This study was conducted 

according to the declaration of Helsinki and was approved by 

the Institutional Review Board of the Nanyang Technological 

University (approval number: IRB-2014-04-026). 

B. Description of the SIMKAP Experiment 

Subjects are asked to perform the Simultaneous Capacity 

(SIMKAP) test module of the Vienna Test System [33]. 

SIMKAP is a commercial psychological test created by 

Schuhfried GmbH for the purpose of assessing an individual’s 

multitasking and stress tolerance. While the test is designed as 

an assessment tool to screen personnel for their multitasking 

ability in multitasking heavy occupations such as air traffic 

management, the test has also been applied in a variety of 

research scenarios involving multitasking [34-36].  

The SIMKAP multitasking test requires subjects to cross 

out identical items by comparing two separate panes, whilst 

responding to auditory questions which can be arithmetic, 

comparison or data lookup in nature. Some cases of auditory 

questions require subjects to respond at a later time, thus 

requiring them to monitor a clock on the upper right corner. 

This multitasking component lasts 18 minutes. The order of 

questions and tasks in this activity are fixed for all subjects, as 

designed by the developers of the Vienna Test System. A 

screenshot of the interface of SIMKAP can be viewed in Fig. 

1. 

As the test utilizes the task battery format and involves 

some form of arithmetic problems in addition to other auditory 

questions, the test follows formats established in previous 

studies [19-26] and hence is a viable stimulus to induce MWL. 
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C. Experimental Procedure 

Subjects were seated comfortably; approximately 60cm in 

front of a 24 inch LED display and were told not to make any 

unnecessary movements apart from responding to the stimuli 

during the experiment. 

There are two parts to the experiment. First, subjects were 

asked to maintain a comfortable position with eyes open and 

not perform any task for 3 minutes. Their EEG was recorded 

and these 3 minutes of recording is then used as the resting 

condition. Next subjects were asked to perform the SIMKAP 

test with EEG being recorded and the final 3 minutes of the 

recording is used as the workload condition. The first and last 

15 seconds of data from each recording was excluded to 

reduce effects from any between task activity, resulting in 

recordings of 2.5 minutes. Subjects were asked to rate their 

perceived MWL after each segment of the experiment on a 

rating scale of 1 to 9. This was performed as a form of 

subjective validation that the subject indeed experienced an 

increase in workload while performing the test as compared to 

the resting condition. One can perceive a rating of 1-3 as low 

(lo) workload, 4-6 as moderate (mi) workload and 7-9 as high 

(hi) workload. The 9-point rating scale [37] used is analogous 

to the NASA-TLX’s 1 to 21 scale and is the most frequently 

used measure in cognitive load studies according to review in 

[38]. A screenshot of the questionnaire used can be viewed in 

Fig. 2.  

D. Data Acquisition 

EEG data was collected using Emotiv EPOC EEG headset 

with sampling frequency of 128Hz and 16 bit A/D resolution. 

The device comprises of fourteen electrodes located at AF3, 

F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, 

shown in Fig. 4 according to the 10-20 international system 

[39]. Data is transmitted to a paired PC desktop via wireless 

Bluetooth and raw data is recorded with the Emotiv 

 
Fig. 3.  The Emotiv EEG Device used in this study and electrode positions 

based on the 10-20 international system. 

  

 
Fig. 1.  Screenshot of the SIMKAP multitask test. Subjects are to mark items in the right panel by matching those already crossed out on the left panel. 
Responses to auditory questions are completed by selecting the correct answer from the bottom panel. Auditory questions include arithmetic problems, 

comparison problems, and information lookup with calendar or telephone book. 

  

 
Fig. 2.  Questionnaire on a 1-9 scale for rating of mental workload, which subjects were required to fill after completion of each segment of the experiment. 
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‘TestBench’ software.  

The Emotiv device was used as it can be easily mounted 

and provides comparable signal quality to a BioSemi or G-

TEC device [40, 41]. A picture of the Emotiv headset and the 

corresponding electrode positions used for recording in the 

experiment is shown in Fig. 3.  

E. Data Processing 

Only 48 of the 50 subjects data was used to form the 

database as the data of 2 subjects were found to be incomplete. 

All data processing was done using MATLAB R2018a with 

EEGLAB, a popular and well documented tool for processing 

of EEG signals [42]. 

 

1) Pre-processing of raw EEG data 

It is important to first pre-process raw EEG data to remove 

artifacts resulting from muscle movement and to clean the 

noise from data before proceeding with any analysis. Here, we 

follow the recommended pre-processing pipeline suggested by 

a developer of EEGLAB [43]. The general steps are: 

1. High-pass filter the raw data at 1Hz 

2. Remove line noise 

3. Perform Artifact Subspace Reconstruction (ASR) 

4. Re-reference data to average 

The key preprocessing step is the ASR which is a non-

stationary method to remove large-amplitude artifacts [44]. 

Fig. 4 shows sample data before and after pre-processing 

steps. We observe that the ASR algorithm removed the large 

amplitude artifact in channel F3 and reconstructed the channel 

data successfully. 

 

2) Analysis of EEG data with STUDY 

We use EEGLAB’s STUDY functionality to load the pre-

processed datasets to explore the EEG mechanisms across 

subjects for the different task conditions. We are interested in 

studying the following “between” conditions: 

1. No task vs. SIMKAP task 

2. Rating Based Lo vs. Mi vs. Hi MWL 

While exploring “between” conditions, we also include the 

spectral analysis of “within” conditions whilst performing the 

two above studies. For study 1, we use all 48 subjects’ data, 

but for study 2, we ignore data from S05, S24 and S42 as 

rating data was not available for these subjects. Study 2 is 

particularly interesting to see if we can verify subjective 

ratings with objective EEG spectral data. 

For each study, entire length of data from each channel is 

used to study the significant spectral mechanisms pertaining to 

each condition and between conditions that contribute to the 

overall neural activity.  

F. Classification Method 

We also provide classification performance analysis for the 

proposed dataset, based on the ratings provided by 45 subjects 

using PSD features via FFT of the delta, theta, alpha and beta 

bands. These features are chosen for simplicity and extensive 

usage in previous studies, hence they serve as a good baseline 

for analysis. A sliding window of size 512 and shift 128 was 

used and as all 14 channels are considered, the studied feature 

set has input dimension of 4 x 14. 

A regression problem is considered with the aim to predict 

the rating of unseen EEG data. 80% of the data (36 subjects) 

was used to conduct feature selection and training while 20% 

of the data (9 subjects) was kept as unseen test data. 

Feature selection was first performed using Neighborhood 

Component Analysis (NCA) to select features for regression 

[45], using 5-fold cross validation. The best features 

accounting for 75% of the total feature weights across all folds 

are selected for use to train a Support Vector Regression 

(SVR) model. The predicted ratings are then converted to 

labels according to the rating scale: 1-3 as low, 4-6 as 

moderate and 7-9 as high and classification performance is 

assessed by comparing with the true labels of the unseen data. 

IV. RESULTS 

We shall first present the findings from EEG spectral 

analysis of the two studies with topographical scalp maps, 

spectral power graphs and regions of significance between 

conditions. Then, we present results of the feature selection 

and the resulting classification performance. 

A. STUDY results 

1) No task vs. SIMKAP task 

For the “No task” condition, from the topographical scalp 

maps, we observe that delta activity is concentrated around the 

AF3, AF4, F4 and F8 positions, with some activity around the 

O1 position. Theta activity is present in AF3, AF4, F3, F4, F8 

and T8, as well as being present in occipital O1, O2 and 

parietal P7 and P8 positions. Alpha activity is observed in the 

AF4, F8, T8, O1, O2, P7 and P8 positions while beta activity 

is seen in AF4, F8, FC6, T8, O1 and O2 positions. 

For the “SIMKAP” condition, activity is present in FC5, 

AF4, F8 and FC6 for both delta and theta bands. For alpha and 
 

Fig. 4.  Sample continuous time EEG channel data before (top) and after 

completion of preprocessing steps (bottom). 
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beta, activity is present in the same areas as delta and theta, 

with additional activity in O1 and O2 positions.  

Comparing both conditions, we observe higher overall PSD 

values for the “SIMKAP” condition across all frequencies. 

Significant frequency regions for each channel are shaded in 

grey, with the most significant channels being FC5, FC6 and 

F8. The compiled results of study 1 is displayed in Fig. 5 and 

those of study 2 is shown in Fig. 6. 

 

2) Rating Based Low vs. Moderate vs. High MWL 

For study 2, the frequency band activity is similar to that 

described in study 1, with the “Low” condition being similar 

to “No task”, with “Moderate” and “High” conditions being 

similar to the “SIMKAP” condition. This is confirmed by 

viewing the spectrum graph and observing that the graph for 

“Moderate” and “High” conditions are almost equal, and 

similar to the shape of the “SIMKAP” condition. Likewise, the 

“Low” and “No task” condition graphs are similar. The 

regions of significance are mostly concentrated in F8 and FC5. 

 
Fig. 5.  Results for study between different conditions based on task a) Scalp topography for different frequency bands b) PSD for different rating conditions c) 

Statistically significant frequency regions for each channel 
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Fig. 5.  Boxplot of validation and testing classification accuracies for Subject Dependent case 

 
Fig. 6. Results for study between different conditions based on rating scales a) Scalp topography for different frequency bands b) PSD for different rating 

conditions c) Statistically significant frequency regions for each channel  
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B. Classification results 

NCA was performed to evaluate the weights of the 56 

features, with results shown in Fig. 7. The top features 

accounting for at least 75% of the weights were selected to 

train an SVR model, which resulted in a final feature 

dimension of 28, a reduction of half the initial feature 

dimensions. The trained regression model was used to predict 

the rating values for the unseen 20% test data, with the 

predicted values converted to either “low”, “moderate” or 

“high” labels based on the respective range the rating values 

are in. A classification accuracy of 69% was achieved on the 

test set, with the confusion matrix shown in Fig. 8. The 

calculated Cohen’s kappa is 0.46 with expected random 

chance accuracy of 42.4%. 

If all features are used to train the regression model, the 

resultant classification accuracy is 69.2% with kappa value of 

0.47. The expected classification accuracy by random chance 

is 41.7%.  

V. DISCUSSION 

A. Spectral Analysis and Classification 

Spectral topographies of the different EEG frequency bands 

are provided for each task condition and for three possible 

workload classification levels based on rating scale. Delta 

activity is localized in frontal areas for all conditions with an 

average increase in PSD for a higher workload. Increase in 

theta PSD localized in frontal areas for higher activity was 

also observed, similar to results reported in [46]. Decrease in 

alpha activity in the occipital areas and increase in beta 

activity in frontal areas especially in channel location F8 was 

observed for increasing mental workload. A study in [47] 

reported similar findings. 

We are also able to verify the subjective ratings of the 

subjects with EEG spectral activity, by observing from the 

PSD graph comparing “low”, “moderate” and “high” 

workload levels. There is a marginal positive difference 

between PSD values across most of the frequencies when 

comparing the “high” and “moderate” conditions indicating 

that the ratings are somewhat accurate in accounting for 

different workload levels. However, this slight difference also 

highlights the inherent weakness of subjective ratings, where 

subjects might not reliably report their experience after 

performing tasks, causing the two curves to be almost exact. 

As the obtained graphs are average PSD across many subjects 

and channels, any variation due to individual difference would 

complicate the prediction of workload rating levels for unseen 

data in the “moderate” and “high” classes. 

This issue is exemplified in our classification analysis of 

selected PSD features. The confusion matrix shows a high 

 
Fig. 7 Feature weights from Neighborhood Component Analysis 

 
Fig. 8 Confusion matrix using 28 features 
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error rate of classification for both the “moderate” and “high” 

levels, at 53.8% and 68.9% respectively. While general 

performance of the model is acceptable, more work can be 

done to effectively classify the “moderate” and “high” classes.  

B. Evaluation of the EEG open access dataset 

The EEG MWL dataset described in this paper provides a 

sizable pool of 48 subjects utilizing commercial psychological 

multitasking test software as the stimuli. A key benefit of 

using a commercial test comes in the detailed support 

documentation provided by the company [34] if required.  

The dataset has the benefit of having uniformity in terms of 

subject data, reducing possible individual difference arising 

from gender, age and education levels. The dataset is also 

accompanied with subjects’ rating of workload, allowing the 

possibility for studies linking subjective and objective 

measures to be performed. 

Furthermore, given the sizable number of subjects, it is also 

possible to explore approaches for both intra-subject and inter-

subject classification schemes and develop algorithms for BCI 

applications. 

However, due to the specificity in terms of subject 

selection, the dataset might be unable to account for an 

overview of EEG mental workload characteristics for the 

general population. 

VI. CONCLUSION 

In this paper, we have described an open access EEG 

database using the SIMKAP multitasking activity to obtain 

MWL data. Our dataset is provided open access to supplement 

the existing pool of MWL datasets with the double benefit of a 

large group of subject data with an official commercial 

psychological test for multitasking as stimuli. Spectral 

analysis and classification has been performed to illustrate the 

validity of the data for research, as the results obtained are 

similar to studies on EEG MWL data performed previously. 

We hope that in providing this sizable dataset of 48 

subjects, development of novel BCI and EEG data 

classification algorithms, particularly to account for subjective 

and objective data, can be facilitated. The raw dataset is 

available for download via: http://dx.doi.org/10.21227/44r8-

ya50. 
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