SAFE: An EEG Dataset for Stable Affective Feature Selection

Zirui Lan, Yisi Liu, Olga Sourina, Lipo Wang, Reinhold Scherer, Gernot Müller-Putz

1 Nanyang Technological University, Singapore
2 Fraunhofer Singapore, Singapore
3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
4 School of Computer Science and Electronic Engineering, University of Essex, UK
5 Institute of Neural Engineering, Graz University of Technology, Graz, Austria

ARTICLE INFO

Keywords:
EEG dataset
Emotion Recognition
Affective features
Stable feature selection
Long-term aBCI performance

ABSTRACT

An affective brain-computer interface (aBCI) is a direct communication pathway between human brain and computer, via which the computer tries to recognize the affective states of its user and respond accordingly. As an aBCI introduces personal affective factors into human-computer interaction, it could potentially enrich the user's experience during the interaction. Successful emotion recognition plays a key role in such a system. The state-of-the-art aBCIs leverage machine learning techniques which consist in acquiring affective electroencephalogram (EEG) signals from the user and calibrating the classifier to the affective patterns of the user. Many studies have reported satisfactory recognition accuracy using this paradigm. However, affective neural patterns are volatile over time even for the same subject. The recognition accuracy cannot be maintained if the usage of aBCI prolongs without recalibration. Existing studies have overlooked the performance evaluation of aBCI during long-term use. In this paper, we propose SAFE—an EEG dataset for stable affective feature selection. The dataset includes multiple recording sessions spanning across several days for each subject. Multiple sessions across different days were recorded so that the long-term recognition performance of aBCI can be evaluated. Based on this dataset, we demonstrate that the recognition accuracy of aBCIs deteriorates when re-calibration is ruled out during long-term usage. Then, we propose a stable feature selection method to choose the most stable affective features, for mitigating the accuracy deterioration to a lesser extent and maximizing the aBCI performance in the long run. We invite other researchers to test the performance of their aBCI algorithms on this dataset, and especially to evaluate the long-term performance of their methods.

1 Introduction

Emotions are a crucial element in our everyday communication. Though intuitive to humans, it remains a challenging task for a computer to perceive the emotions of its user. Affective computing, as an emerging research topic that seeks to develop emotion-aware systems to recognize, interpret and process human emotion, has received increasing attention in recent years. Early works have focused on analyzing the physiological responses to recognize emotions, such as heart rate [1], skin conductance [2], etc. These physiological responses are regulated by the autonomic nervous systems under the influence of emotions, hence the possibility to interpret emotions by measuring such responses. More recent studies have targeted the brain's role in perceiving and regulating emotions [3], giving rise to the affective brain-computer interface (aBCI). An electroencephalogram (EEG)-based aBCI is a direct communication pathway between human brain and computer by means of spontaneous EEG signals, bypassing the conventional pathways of peripheral nerves and muscles. Such an affective interface could potentially enrich the user's experience during the interaction with a computer if the computer is enabled to feel and respond to human emotions. In applications, an aBCI operates in such a paradigm that forms a loop as diagrammed in Fig. 1. In this paradigm, there are notably three core parts: signal acquisition, emotion classification, and feedback to the user. The user generates EEG signals, which are captured by the EEG device. The EEG signals are then analysed and classified, and the classification results are fed into an application which executes subroutines according to the recognized emotions. Feedback is then given to the user. Successful emotion recognition plays a key role in an aBCI as it highly affects the quality of such an interface. The state-of-the-art aBCI leverages machine learning techniques which consist in acquiring affective EEG signals from the user and calibrating the classifier to the affective patterns of the user. Many studies about aBCI have
reported satisfactory recognition accuracy using this paradigm [4-14]. In these studies, affective EEG data were collected within a relatively short period, and k-fold cross-validations were carried out to evaluate the recognition accuracy. In a k-fold cross-validation, the EEG data are segmented into k nonoverlapping sections: k-1 folds are used to train the classifier, and the remaining fold is used to test the recognition accuracy. However, due to the volatility of affective neural patterns, the recognition accuracy cannot be maintained if the usage of aBCI prolongs without re-calibrating the classifier. The recognition accuracy assessed by cross-validating short-term EEG data is over-optimistic and can hardly represent the system performance in the long run. On the other hand, there is little study on the long-term recognition performance of aBCI, which may partly be due to the fact that few existing affective EEG datasets contain recordings over a long course of time.

We devote this paper to presenting an EEG dataset that contains multiple recordings on the same day and different days of the same subjects, and to the investigation of aBCI performance over a long course of time. As the (re-)calibration process may be time-consuming, tedious and laborious, we are motivated to mitigate the burden of frequent re-calibrations on the user. Ideally, a stable affective EEG feature should give consistent measurements of the same emotion on the same subject over a long course of time. We presented a pilot study on the stability of affective EEG features in [15, 16], where we hypothesize that using stable EEG features may improve the long-term recognition accuracy, while unstable features may worsen the recognition performance of the BCI in the long run. In [17], we propose a stable feature selection method to choose the optimal set of stable features that maximize the recognition accuracy of the system in the long run. In this paper, we aim at introducing the dataset used in our previous study [17], and make it available to the public1. We invite other researchers to test the performance of their aBCI algorithms on this dataset, and especially to evaluate the long-term performance of their methods.

This paper is organized as follows. Section 2 reviews the existing affective EEG datasets. Section 3 documents our data collection procedures. Section 4 introduces our proposed stable feature selection method. Section 5 elaborates on the simulations to evaluate the short-term and long-term performance of aBCI. Section 6 presents the results with discussions. Section 7 concludes this paper.

2 Review of existing affective EEG datasets

There are a few affective datasets available that contain EEG recordings. The enterface (2006, [18]) dataset includes the EEG and functional near-infrared spectroscopy (fNIRS) recorded from 5 subjects. They adopted the pictorial affective stimuli from the International Affective Picture System (IAPS) to induce 3 emotions (calm, positive exiting, and negative exciting) on the subjects. The EEG signals were captured by a Biosemi Active II device with 54 effective EEG channels at a sampling rate of 1024 Hz. The MAHNOD HCI (2012, [19]) dataset provides the EEG recordings along with other physiological signals carried out on 27 subjects. Emotional video clips extracted from movies and online repositories were used as affective stimuli to elicit 6 emotions (disgust, amusement, joy, fear, sadness, and neutral). A 32-channel Biosemi Active II device was used to record the EEG signals. The DEAP (2012, [20]) dataset consists of the EEG and other peripheral physiological signals collected from 32 subjects using the Biosemi Active II device. Forty 1-minute-long music videos were chosen as affective stimuli. After the exposure to each emotional stimulus, the subject was required to provide feedback on his/her truly felt emotion in the form of the Self-Assessment Manikin (SAM) questionnaire [21]. The SAM feedback was regarded as the truth as to what emotion has been elicited on the subject. In these three datasets, the emotion elicitation experiment and EEG data collection were carried out on each subject within 1-2 hours in one day. No repeated elicitation experiment or EEG data collection is made on the same subject on different days. That is to say, the affective EEG data were collected within a relatively short period for each subject and therefore, these datasets are not suitable for the evaluation of the long-term classification performance of aBCIs. The SEED (2015, [22]) dataset is the first dataset that provides repeated affective EEG recordings on the same subject on different days. The SEED dataset comprises the EEG recordings from 15 subjects for 3 emotions (positive, neutral, and negative). Fifteen Chinese movie excerpts were selected as affective stimuli in the emotion induction experiment. The EEG signals were collected by an ESI NeuroScan system equipped with 64 channels. The emotion induction experiment and EEG data collection were carried out on each subject three times on three different days. Hence, this dataset makes possible the evaluation of long-term performance of aBCI.

Our dataset introduced in this paper complements the abovementioned existing datasets in two ways. Firstly, the existing datasets [18-20, 22] were collected using specialized, costly EEG devices such as Biosemi Active II (in [18-20]) and ESI NeuroScan (in [22]). Although these systems may provide better signal quality, they are bulky and not quite suitable for casual usage in everyday applications. In our dataset, we opt for a low-cost, portable, consumer-grade EEG headset, which better simulates the application scenario an average user would encounter in everyday applications. Secondly, the SEED dataset included 3 repeated measurements of the same induced affective states on 3 different days. In our dataset, we extend the repeated

measurements to 16 times in a course of 8 days. We carry out two repetitions per day and thus, our dataset provides not only repeated recordings of the same induced affective states across different days, but also on the same days. In the next section, we elaborate on the experiment procedures for our data collection.

3 Data collection

3.1 Affective Stimuli Selection

The selection of affective stimuli plays a role in successful emotion elicitation. We select audio stimuli with known affective attributes from the International Affective Digitized Sounds (IADS, [23]) library. IADS is an established affective stimuli library that provides normative emotion stimuli for emotion induction experiment. IADS contains a collection of 167 sound clips, each lasting for 6 seconds. The affective attributes of each sound clip have been rated by and averaged over a pool of 100 subjects in terms of valence, arousal, and dominance in accordance with Mehrabian and Russel's 3D emotional model [24] on a scale of 1-9. By using the 3D emotional model, emotions boil down to and are quantified by three orthogonal dimensions. The valence (V) dimension measures how pleasant an emotion is, ranging from unpleasant to pleasant. For example, both frightened and sad are unpleasant emotions and rated low in valence, whereas happy and surprised are pleasant emotions that score high in valence. Likewise, the arousal (A) dimension quantifies how activated an emotion is, ranging from inactive/calm to active/excited. For instance, sad is a lowly activated emotion whereas frightened is a highly activated emotion. The dominance (D) dimension reveals the dominating power associated with an emotion, ranging from submissive (lack of control) to dominating (in control of everything). When a person feels frightened, he/she lacks control of the surroundings and feels submissive. When a person feels angry, he/she stands in a dominating position, tends to aggress and is at a high dominance level. If we consider each dimension to be binary – either high (H) or low(L) – then the 3D emotional model identifies a total of 8 emotions: HVHAHD, HVHALD, HVLAHD, HVLALD, LVHAHD, LVHALD, LVLAHD, and LVLALD. Out of the eight emotions, we intend to induce the four emotions that are common in everyday life: HVLAHD (pleasant), HVHAHD (happy), LVHALD (frightened), and LVHAHD (angry).

To find stimuli that induce the four desired emotions in IADS, we consider rating equal to 5 as a threshold. Rating smaller than 5 is considered low while that larger than 5 is considered high. We then select ten stimuli from IADS for each emotion class, as is shown in Table 1. For instance, the stimuli to induce pleasant emotion include those whose valence ratings are larger than 5, arousal ratings smaller than 5, and dominance ratings larger than 5. Likewise, the same threshold applies to the other emotions except angry, where there are not enough ten stimuli with dominance rated higher than 5, and we marginally lower the threshold to allow dominance rated higher than 4 to be selected.

3.2 Data Collection Protocol

The data collection was carried out in a laboratory environment with controlled illumination. The EEG data were recorded with an Emotiv EPOC headset on the project PC. The Emotiv EPOC headset is a lightweight, portable and wireless EEG device. Specifically, the Emotiv EPOC was chosen because it is more likely to be used by the general consumers in a casual, everyday application than the costly, research-grade but bulky EEG device. Despite being affordable, the signal quality of EEG data recorded with Emotiv EPOC has been rigorously examined and compared to that of the NeuroScan device, a research-grade EEG system, leading to the conclusion that Emotiv EPOC compares well with NeuroScan for the reliable auditory ERPs (Event Related Potentials) [25, 26]. Other seminal studies validating the result quality produced by Emotiv EPOC can be found in [27-30].

In existing datasets, e.g., enterface [18], MAHNOD HCI [19], and DEAP [20], EEG data were collected within a relatively short period in one single day for each subject. However, we stress that datasets with EEG recording limited to a relatively short time span are not enough for the evaluation of long-term aBCI performance. With this in mind, our data collection experiment was designed such that multiple EEG data recording sessions within the same day and across different days are carried out for each subject.

As shown in Fig. 2, for each subject, we carried out 16 recording sessions in a course of 8 days. Specifically, we conducted 2 recording sessions per day for each subject, one in the morning and the other in the afternoon. Each session consisted of four trials corresponding to four targeted emotions. The sequence of emotion induction was as such that trials 1 to 4 corresponded to pleasant, happy, frightened, and angry emotion, respectively. During each trial, the EEG recording started with a "tick" sound, following which a 16-second silent interval was given to the subject to get prepared for the stimuli exposure. After that, ten IADS stimuli were presented to the subject in the order shown in Table 1. The EEG recording of one trial lasted for 76 seconds. As soon as the stimuli presentation ended, the subject was required to fill out the self-assessment questionnaire, during which the EEG signals were not recorded. For the self-assessment, we adopted the modified Self-Assessment Manikin (SAM) questionnaire as was used in [20] for the DEAP dataset. Specifically, the subject needed to self-assess the emotional experience during stimuli exposure from these five dimensions on a scale of 1-9: the valence, arousal, and dominance dimensions in line with Mehrabian and Russel's 3D emotion model [24], plus the liking and the familiarity dimensions. The valence scale ranges from unpleasant to pleasant. The arousal
scale ranges from inactive to active. The dominance scale ranges from submissive to dominating. The liking scale ranges from disliking to liking, which is a personal preference of the subject and not to be confused with the valence dimension. The familiarity scale ranges from unfamiliar to familiar.

Six subjects participated in our data collection experiment (5 males and 1 female, aged 24-28). All subjects reported no history of mental diseases or head injuries. Prior to the commencement of the experiment, the procedure of the experiment, the use of self-assessment questionnaire and the meaning of each affective attribute (e.g., valence) have been well-explained to the subject both verbally and in writing. The experiment would proceed only if the subject expressed sufficient understanding of the affective attributes. Written consent was obtained from the subject before we proceed to data collection. During the experiment, the experimenter assisted the subject in setting up the EEG device. The start/stop of recording was controlled by the experimenter. The subject was seated approximately 1 meter from the screen of the project PC and wearing a pair of earphones with the volume properly adjusted. The subject was told to sit back and rest the arms on the armrests with minimum muscle movement to avoid contaminating the EEG signals. After each recording, the experimenter administered the digital questionnaire to the subject for the self-assessment. The subject completed the questionnaire on the same project PC, where the EEG recordings were saved together with the respective self-assessment responses.

3.3 Analysis of affective rating responses

The self-assessment questionnaires collected from the subjects were analyzed to examine the effect of our emotion elicitation experiment. We first analyzed the variation of affective ratings across different sessions, where we computed the mean and standard deviation of the affective ratings collected from each subject across the sixteen sessions. As shown in Table 2, the standard deviations are mostly smaller than 1. This indicates that the subjects produced consistent ratings across sessions.

<table>
<thead>
<tr>
<th>Targeted emotion</th>
<th>IADS Index</th>
<th>Stimulus description</th>
<th>Valence (mean ± std)</th>
<th>Arousal (mean ± std)</th>
<th>Dominance (mean ± std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleasant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HVLAHD)</td>
<td>150</td>
<td>Seagull</td>
<td>6.95 ± 1.64</td>
<td>4.38 ± 1.64</td>
<td>5.91 ± 1.80</td>
</tr>
<tr>
<td></td>
<td>151</td>
<td>Robin’s chirping</td>
<td>7.12 ± 1.56</td>
<td>4.47 ± 1.56</td>
<td>5.73 ± 1.92</td>
</tr>
<tr>
<td></td>
<td>171</td>
<td>Country night</td>
<td>5.59 ± 1.79</td>
<td>3.71 ± 1.79</td>
<td>5.52 ± 1.77</td>
</tr>
<tr>
<td></td>
<td>172</td>
<td>Brook</td>
<td>6.62 ± 1.69</td>
<td>3.36 ± 1.69</td>
<td>6.21 ± 1.86</td>
</tr>
<tr>
<td></td>
<td>377</td>
<td>Rain</td>
<td>5.84 ± 1.73</td>
<td>3.93 ± 1.73</td>
<td>5.70 ± 1.89</td>
</tr>
<tr>
<td></td>
<td>809</td>
<td>Harp</td>
<td>7.44 ± 1.41</td>
<td>3.36 ± 1.41</td>
<td>6.29 ± 1.87</td>
</tr>
<tr>
<td></td>
<td>810</td>
<td>Beethoven’s music</td>
<td>7.51 ± 1.66</td>
<td>4.18 ± 1.66</td>
<td>6.07 ± 1.92</td>
</tr>
<tr>
<td></td>
<td>812</td>
<td>Choir</td>
<td>6.90 ± 1.69</td>
<td>3.43 ± 1.69</td>
<td>5.69 ± 2.05</td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>Shower</td>
<td>6.20 ± 1.60</td>
<td>4.40 ± 1.60</td>
<td>5.62 ± 1.61</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>Whistling</td>
<td>6.10 ± 1.83</td>
<td>4.23 ± 1.83</td>
<td>5.85 ± 1.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>6.63 ± 1.66</td>
<td>3.95 ± 1.66</td>
<td>5.86 ± 1.85</td>
</tr>
<tr>
<td>Happy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HVHAHD)</td>
<td>109</td>
<td>Carousel</td>
<td>6.40 ± 2.13</td>
<td>5.64 ± 2.13</td>
<td>5.69 ± 1.93</td>
</tr>
<tr>
<td></td>
<td>254</td>
<td>Video game</td>
<td>6.17 ± 1.65</td>
<td>5.58 ± 1.65</td>
<td>6.25 ± 2.05</td>
</tr>
<tr>
<td></td>
<td>351</td>
<td>Applause</td>
<td>7.32 ± 1.62</td>
<td>5.55 ± 1.62</td>
<td>6.74 ± 1.71</td>
</tr>
<tr>
<td></td>
<td>716</td>
<td>Slot machine</td>
<td>7.00 ± 2.17</td>
<td>6.44 ± 2.17</td>
<td>6.54 ± 2.03</td>
</tr>
<tr>
<td></td>
<td>601</td>
<td>Colonial music</td>
<td>6.53 ± 1.66</td>
<td>5.84 ± 1.66</td>
<td>5.73 ± 1.58</td>
</tr>
<tr>
<td></td>
<td>367</td>
<td>Casino 2</td>
<td>7.33 ± 1.74</td>
<td>6.72 ± 1.74</td>
<td>6.41 ± 1.98</td>
</tr>
<tr>
<td></td>
<td>366</td>
<td>Casino 1</td>
<td>7.09 ± 1.73</td>
<td>6.26 ± 1.73</td>
<td>6.08 ± 2.19</td>
</tr>
<tr>
<td></td>
<td>815</td>
<td>Rock & Roll music</td>
<td>7.90 ± 1.53</td>
<td>6.85 ± 1.53</td>
<td>6.86 ± 1.99</td>
</tr>
<tr>
<td></td>
<td>817</td>
<td>Bongos</td>
<td>7.67 ± 1.46</td>
<td>7.15 ± 1.46</td>
<td>6.44 ± 1.73</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Funk music</td>
<td>6.94 ± 1.98</td>
<td>5.87 ± 1.98</td>
<td>5.97 ± 1.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>7.04 ± 1.77</td>
<td>6.19 ± 1.77</td>
<td>6.27 ± 1.90</td>
</tr>
<tr>
<td>Frightened</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LVHALD)</td>
<td>275</td>
<td>Screaming</td>
<td>2.05 ± 1.62</td>
<td>8.16 ± 1.62</td>
<td>2.55 ± 2.01</td>
</tr>
<tr>
<td></td>
<td>276</td>
<td>Female screaming 2</td>
<td>1.93 ± 1.63</td>
<td>7.77 ± 1.63</td>
<td>2.69 ± 2.02</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>Female screaming 3</td>
<td>1.63 ± 1.13</td>
<td>7.79 ± 1.13</td>
<td>2.32 ± 1.78</td>
</tr>
<tr>
<td></td>
<td>279</td>
<td>Attack 1</td>
<td>1.68 ± 1.31</td>
<td>7.95 ± 1.31</td>
<td>2.30 ± 1.94</td>
</tr>
<tr>
<td></td>
<td>284</td>
<td>Attack 3</td>
<td>2.01 ± 1.48</td>
<td>7.05 ± 1.48</td>
<td>2.99 ± 2.00</td>
</tr>
<tr>
<td></td>
<td>285</td>
<td>Attack 2</td>
<td>1.80 ± 1.56</td>
<td>7.79 ± 1.56</td>
<td>2.41 ± 2.02</td>
</tr>
<tr>
<td></td>
<td>286</td>
<td>Victim</td>
<td>1.68 ± 1.18</td>
<td>7.88 ± 1.18</td>
<td>2.31 ± 2.03</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>Fight</td>
<td>1.65 ± 1.27</td>
<td>7.61 ± 1.27</td>
<td>2.89 ± 2.05</td>
</tr>
<tr>
<td></td>
<td>292</td>
<td>Male screaming</td>
<td>1.99 ± 1.41</td>
<td>7.28 ± 1.41</td>
<td>2.82 ± 1.78</td>
</tr>
<tr>
<td></td>
<td>422</td>
<td>Tire skids</td>
<td>2.22 ± 1.47</td>
<td>7.52 ± 1.47</td>
<td>2.62 ± 1.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>1.86 ± 1.41</td>
<td>7.68 ± 1.41</td>
<td>2.59 ± 1.94</td>
</tr>
<tr>
<td>Angry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LVHAHD)</td>
<td>116</td>
<td>Buzzing</td>
<td>3.02 ± 1.65</td>
<td>6.51 ± 1.65</td>
<td>4.14 ± 2.11</td>
</tr>
<tr>
<td></td>
<td>243</td>
<td>Couple sneeze</td>
<td>3.86 ± 1.70</td>
<td>5.19 ± 1.70</td>
<td>4.23 ± 1.90</td>
</tr>
<tr>
<td></td>
<td>251</td>
<td>Nose blow</td>
<td>4.16 ± 2.02</td>
<td>5.14 ± 2.02</td>
<td>4.44 ± 1.89</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>Jack hammer</td>
<td>3.70 ± 1.88</td>
<td>6.33 ± 1.88</td>
<td>4.18 ± 1.93</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Helicopter 2</td>
<td>4.86 ± 1.48</td>
<td>5.89 ± 1.48</td>
<td>4.59 ± 1.55</td>
</tr>
<tr>
<td></td>
<td>423</td>
<td>Injury</td>
<td>3.31 ± 1.79</td>
<td>6.23 ± 1.79</td>
<td>4.22 ± 1.89</td>
</tr>
<tr>
<td></td>
<td>702</td>
<td>Belch</td>
<td>4.45 ± 2.57</td>
<td>5.37 ± 2.57</td>
<td>5.23 ± 2.04</td>
</tr>
<tr>
<td></td>
<td>706</td>
<td>War</td>
<td>4.16 ± 1.68</td>
<td>5.30 ± 1.68</td>
<td>4.55 ± 1.82</td>
</tr>
<tr>
<td></td>
<td>729</td>
<td>Paper 2</td>
<td>4.30 ± 1.69</td>
<td>5.79 ± 1.69</td>
<td>5.33 ± 2.27</td>
</tr>
<tr>
<td></td>
<td>910</td>
<td>Electricity</td>
<td>3.86 ± 1.83</td>
<td>6.18 ± 1.83</td>
<td>4.03 ± 1.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>3.97 ± 1.83</td>
<td>5.79 ± 1.83</td>
<td>4.49 ± 1.92</td>
</tr>
</tbody>
</table>
suggests that the subjects have given consistent ratings in relation to each targeted emotion across different sessions, which accounts for a low variation in feeling the same emotion across different sessions. At first glance, the mean values of ratings in Table 2 are trending similarly to the ratings of IADS stimuli shown in Table 1 for the respective emotion. We further validate this by computing the Pearson correlation coefficients between the subject’s self-assessment ratings and the IADS stimulus ratings in all sessions, as shown in Table 3. The results show significant positive correlation (α = 0.05, with Bonferroni correction). The significant correlation between the subject’s self-assessment ratings and the IADS ratings suggests that the subject’s feelings are largely in agreement with what the affective stimuli intend to elicit. It can be reasonably assumed that the subject felt the targeted emotions during the emotion elicitation experiment.

Additionally, we computed the pairwise Pearson correlation coefficients among valence, arousal, dominance, liking and familiarity of the subject’s self-assessment ratings. The correlations are mostly insignificant between arousal and valence and between arousal and dominance. This may suggest that the subjects are able to differentiate these affective attributes well. However, it is worth mentioning that the correlation is significant between valence and liking and between dominance and liking on all subjects (α = 0.05, with Bonferroni correction). The significant correlation between the subject’s feelings are largely in agreement with what the subjective self-assessment ratings and the IADS ratings suggests that the subjects have given consistent ratings in relation to each targeted emotion across different sessions, which accounts for a low variation in feeling the same emotion across different sessions. At first glance, the mean values of ratings in Table 2 are trending similarly to the ratings of IADS stimuli shown in Table 1 for the respective emotion. We further validate this by computing the Pearson correlation coefficients between the subject’s self-assessment ratings and the IADS stimulus ratings in all sessions, as shown in Table 3. The results show significant positive correlation (α = 0.05, with Bonferroni correction). The significant correlation between the subject’s self-assessment ratings and the IADS ratings suggests that the subject’s feelings are largely in agreement with what the affective stimuli intend to elicit. It can be reasonably assumed that the subject felt the targeted emotions during the emotion elicitation experiment.

Additionally, we computed the pairwise Pearson correlation coefficients among valence, arousal, dominance, liking and familiarity of the subject’s self-assessment ratings. The correlations are mostly insignificant between arousal and valence and between arousal and dominance. This may suggest that the subjects are able to differentiate these affective attributes well. However, it is worth mentioning that the correlation is significant between valence and liking and between dominance and liking on all subjects (α = 0.05, with Bonferroni correction), as presented in Table 4. Without implication of any causality, the direct correlation between valence and liking implies that a subject tends to like pleasant stimuli, and dislike unpleasant stimuli. Likewise, the direct correlation between dominance and liking implies that a subject tends to like the stimuli that make the subject feel dominating, and dislike the stimuli that make the subject feel submissive.

4 Proposed stable feature selection methods

In this section, we describe the approaches to our proposed feature selection algorithm. Firstly, we review EEG feature extraction methods in 4.1. Then, we introduce an ANOVA-based Correlation Coefficient (ICC) in 4.2. Our proposed feature selection algorithm is presented in 4.3.

4.1 Feature Extraction

4.1.1 Fractal Dimension

Let \(x \in \mathbb{R}^n \) denote a column vector of \(n \) EEG time series samples (raw signals) from one channel. Construct \(k \) new time series by re-sampling \(x \) as follows.

\[
x^m_k = [x(m), x(m + k), ..., x(m + \lceil \frac{n-m}{k} \rceil k)]', \quad m = 1, 2, ..., k,
\]

where \(\lceil \cdot \rceil \) denotes the floor function, \(m \) the initial time series sample and \(k \) the interval. We compute the length of the curve for each new series as follows.

\[
I_k^m = \frac{1}{k} \left(\sum_{i=1}^{\lceil \frac{n-m}{k} \rceil} \| x(m + ik) - x(m + (i - 1)k) \| \right)^{\frac{k}{\lceil \frac{n-m}{k} \rceil}}.
\]

Let \(l_k \) denote the mean of \(I_k^m \) for \(m = 1, 2, ..., k \), the fractal dimension of time series \(x \) is computed as \([31]\)

\[
FD = -\lim_{k \to \infty} \frac{\log(l_k)}{\log(k)}.
\]

Apparentlly, in numerical evaluation, it is not possible for \(k \) to be infinite. It has proven \([32, 33]\) that the computed fractal value approximates the true, theoretical fractal value reasonably well given a reasonably large \(k \). Based on the study in \([33]\), \(k = 32 \) yields a good balance between accuracy and computational resources required. In this study, we follow the same parameter setting.

4.1.2 Statistics

Table 2 Mean ± standard deviation of subject’s self-assessment ratings across sixteen sessions. Valence: from unpleasant = 1 to pleasant = 9. Arousal: from inactive = 1 to active = 9. Dominance: from submissive = 1 to dominating = 9.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Targeted Emotion</th>
<th>Valence</th>
<th>Arousal</th>
<th>Dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pleasant</td>
<td>7.81 ± 0.40</td>
<td>2.56 ± 0.51</td>
<td>6.75 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Happy</td>
<td>7.63 ± 0.50</td>
<td>6.88 ± 1.02</td>
<td>6.38 ± 0.62</td>
</tr>
<tr>
<td></td>
<td>Frightened</td>
<td>2.06 ± 0.25</td>
<td>6.75 ± 0.68</td>
<td>3.31 ± 0.48</td>
</tr>
<tr>
<td></td>
<td>Angry</td>
<td>3.31 ± 0.48</td>
<td>5.81 ± 0.66</td>
<td>4.06 ± 0.44</td>
</tr>
<tr>
<td>2</td>
<td>Pleasant</td>
<td>7.69 ± 0.87</td>
<td>3.56 ± 1.03</td>
<td>6.81 ± 0.66</td>
</tr>
<tr>
<td></td>
<td>Happy</td>
<td>8.56 ± 0.51</td>
<td>8.81 ± 0.40</td>
<td>7.38 ± 0.50</td>
</tr>
<tr>
<td></td>
<td>Frightened</td>
<td>1.06 ± 0.25</td>
<td>7.00 ± 0.63</td>
<td>2.25 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Angry</td>
<td>1.38 ± 0.62</td>
<td>3.44 ± 0.51</td>
<td>3.81 ± 0.40</td>
</tr>
<tr>
<td>3</td>
<td>Pleasant</td>
<td>6.44 ± 0.63</td>
<td>2.38 ± 0.81</td>
<td>7.00 ± 0.63</td>
</tr>
<tr>
<td></td>
<td>Happy</td>
<td>6.19 ± 0.40</td>
<td>6.19 ± 0.40</td>
<td>6.25 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>Frightened</td>
<td>3.56 ± 0.63</td>
<td>6.25 ± 0.45</td>
<td>3.56 ± 0.73</td>
</tr>
<tr>
<td></td>
<td>Angry</td>
<td>3.63 ± 0.50</td>
<td>6.19 ± 0.40</td>
<td>6.44 ± 0.51</td>
</tr>
<tr>
<td>4</td>
<td>Pleasant</td>
<td>5.44 ± 0.73</td>
<td>4.00 ± 1.10</td>
<td>6.25 ± 0.77</td>
</tr>
<tr>
<td></td>
<td>Happy</td>
<td>6.88 ± 0.72</td>
<td>6.50 ± 1.21</td>
<td>7.13 ± 0.89</td>
</tr>
<tr>
<td></td>
<td>Frightened</td>
<td>3.19 ± 0.40</td>
<td>6.81 ± 0.83</td>
<td>3.06 ± 0.44</td>
</tr>
<tr>
<td></td>
<td>Angry</td>
<td>3.38 ± 0.50</td>
<td>6.38 ± 0.50</td>
<td>6.75 ± 0.45</td>
</tr>
<tr>
<td>5</td>
<td>Pleasant</td>
<td>7.25 ± 0.45</td>
<td>5.38 ± 1.15</td>
<td>6.38 ± 1.36</td>
</tr>
<tr>
<td></td>
<td>Happy</td>
<td>7.75 ± 0.45</td>
<td>7.31 ± 0.48</td>
<td>7.56 ± 0.51</td>
</tr>
<tr>
<td></td>
<td>Frightened</td>
<td>2.69 ± 0.48</td>
<td>6.69 ± 1.01</td>
<td>3.19 ± 1.22</td>
</tr>
<tr>
<td></td>
<td>Angry</td>
<td>2.75 ± 1.34</td>
<td>7.06 ± 1.48</td>
<td>4.19 ± 1.42</td>
</tr>
<tr>
<td>6</td>
<td>Pleasant</td>
<td>5.63 ± 0.62</td>
<td>3.00 ± 1.15</td>
<td>7.00 ± 0.37</td>
</tr>
<tr>
<td></td>
<td>Happy</td>
<td>6.63 ± 0.62</td>
<td>6.25 ± 0.58</td>
<td>7.00 ± 0.37</td>
</tr>
<tr>
<td></td>
<td>Frightened</td>
<td>3.06 ± 0.44</td>
<td>6.88 ± 0.34</td>
<td>3.06 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>Angry</td>
<td>3.44 ± 0.51</td>
<td>6.38 ± 0.81</td>
<td>3.69 ± 1.01</td>
</tr>
</tbody>
</table>

Table 3 Pearson correlation coefficients between subject’s self-assessment ratings and IADS stimulus ratings.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Valence</th>
<th>Arousal</th>
<th>Dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9655</td>
<td>0.8288</td>
<td>0.8881</td>
</tr>
<tr>
<td>2</td>
<td>0.9324</td>
<td>0.6009</td>
<td>0.9498</td>
</tr>
<tr>
<td>3</td>
<td>0.8679</td>
<td>0.8162</td>
<td>0.8037</td>
</tr>
<tr>
<td>4</td>
<td>0.8559</td>
<td>0.7069</td>
<td>0.8206</td>
</tr>
<tr>
<td>5</td>
<td>0.8949</td>
<td>0.6494</td>
<td>0.7937</td>
</tr>
<tr>
<td>6</td>
<td>0.8935</td>
<td>0.8189</td>
<td>0.8870</td>
</tr>
</tbody>
</table>

Table 4 Pearson correlation coefficients between valence and liking and dominance and liking of subject’s self-assessment ratings.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Valence-Liking</th>
<th>Dominance-Liking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9681</td>
<td>0.9203</td>
</tr>
<tr>
<td>2</td>
<td>0.9635</td>
<td>0.9076</td>
</tr>
<tr>
<td>3</td>
<td>0.9076</td>
<td>0.5494</td>
</tr>
<tr>
<td>4</td>
<td>0.8426</td>
<td>0.4660</td>
</tr>
<tr>
<td>5</td>
<td>0.9477</td>
<td>0.7990</td>
</tr>
<tr>
<td>6</td>
<td>0.9446</td>
<td>0.8969</td>
</tr>
</tbody>
</table>
Six statistical features were adopted in [34] for EEG-based emotion recognition, which, in combination with the fractal dimension feature, have been demonstrated to improve the classification accuracy [34]. Six statistical features are computed as follows.

Mean of the raw signals:

\[\mu_x = \frac{1}{n} \sum_{i=1}^{n} x(i), \]

(4)

Standard deviation of the raw signals:

\[\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x(i) - \mu_x)^2}, \]

(5)

Mean of the absolute values of the first order differences of the raw signals:

\[\delta_x = \frac{1}{n-1} \sum_{i=1}^{n-1} |x(i+1) - x(i)|, \]

(6)

Mean of the absolute values of the first order differences of the normalized signals:

\[\delta_x = \frac{1}{n-1} \sum_{i=1}^{n-1} |\bar{x}(i+1) - \bar{x}(i)| = \frac{\delta_x}{\sigma_x}, \]

(7)

Mean of the absolute values of the second order differences of the raw signals:

\[\gamma_x = \frac{1}{n-2} \sum_{i=1}^{n-2} |x(i+2) - x(i)|, \]

(8)

Mean of the absolute values of the second order differences of the normalized signals:

\[\gamma_x = \frac{1}{n-2} \sum_{i=1}^{n-2} |\bar{x}(i+2) - \bar{x}(i)| = \frac{\gamma_x}{\sigma_x}, \]

(9)

In (7) and (9), \(\bar{x} \) denotes the normalized (zero mean, unit variance) signals, i.e., \(\bar{x} = (x - \mu_x)/\sigma_x \).

4.1.3 Spectral Band Power

Spectral band power, or simply “power”, is one of the most extensively used features in EEG-related research [4, 6, 10, 12, 14]. It is common practice to partition the EEG power spectrum into several sub-bands (though the frequency range may slightly differ from case to case): alpha band, theta band, and beta band, etc. In our study, the EEG power features from theta band (4 – 8 Hz), alpha band (8 – 12 Hz), and beta band (12 – 30 Hz) are computed.

The power features are obtained by first computing the Fourier Transform on the EEG signals. The discrete Fourier Transform converts a series \(x = [x(0), x(1), ..., x(N-1)]^T \) to another series \(s = [s(0), s(1), ..., s(N-1)]^T \) in a frequency domain. \(s \) is computed as

\[s(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}, \]

(10)

where \(N \) is the number of points in the series. Then, the power spectrum density is computed as

\[\hat{s}(k) = \frac{1}{N} |s(k)|^2. \]

(11)

Lastly, the spectral band power features are computed by averaging the power spectrum density \(\hat{s}(k) \) over the targeted sub-band. E.g., the alpha band power is computed by averaging \(\hat{s}(k) \) over 8 – 12 Hz.

4.1.4 Higher Order Crossing

Higher Order Crossing (HOC) was proposed in [35] to capture the oscillatory pattern of time series, and used in [36-38] as feature to recognize human emotion from EEG signals. The HOC is computed by first zero-meaning the time series \(x \) as

\[z(i) = x(i) - \mu_x, \]

(12)

where \(z \) is the zero-meaned series of \(x \) and \(\mu_x \) the mean of \(x \) computed as per (4). Then, a sequence of filters \(\nu \) is successively applied to \(z \), where \(\nu \) is the backward difference operator, \(\nu \equiv z(i) - z(i-1) \). Denote the \(k \)-th-order-filtered series of \(z \) as \(\xi_k(z) \). \(\xi_k(z) \) is obtained by iteratively applying \(\nu \) to \(z \), as

\[\xi_k(z) = \nu^{k-1} z, \nu^0 z = z. \]

(13)

Then, as its name suggests, the feature consists in counting the number of zero-crossing, which is equivalent to the times of sign changes, in \(\xi_k(z) \). We follow [34] and compute the HOC feature of order \(k = 1, 2, 3, ..., 36 \).

4.1.5 Signal Energy

The signal energy is the sum of squared amplitude of the signal [39], computed as

\[\varepsilon = \sum |x(i)|^2. \]

(14)

4.1.6 Hjorth Feature

Hjorth [40] proposed three features for time series, which have been used as affective EEG features in [41, 42].

Activity:

\[a(x) = \frac{1}{n} \sum_{i=1}^{n} (x(i) - \mu_x)^2, \]

(15)

Mobility:

\[m(x) = \sqrt{\frac{\text{var}(x)}{\text{var}^2(x)}} \]

(16)

where \(\mu_x \) is the mean of \(x \) computed as per (4).

Complexity:

\[c(x) = \frac{m(x)}{m(x^2)} \]

(17)

which is the mobility of the time derivative of \(x \) over the mobility of \(x \).

4.2 Feature Stability Measurement

The stability of feature parameters was quantified by the Intraclass Correlation Coefficient (ICC). ICC allows the assessment of similarity in grouped data. It describes how well the data from the same group resemble each other. ICC was often used in EEG stability study [43, 44]. ICC is derived from a one-way ANOVA model and defined as [45]

\[\text{ICC} = \frac{MS_g - MS_w}{MS_g + (k-1)MS_w}, \]

(18)

where \(MS_g \), \(MS_w \) and \(k \) denote the mean square error between groups, the mean square error within group, and the number of samples in each group, respectively. A larger ICC value indicates higher similarity among the grouped data. ICC tends to
one when there is absolute agreement among the grouped data, i.e., $MS_U = 0$. A smaller ICC value suggests a lower similarity level. ICC value can drop below zero in the case when MS_U is larger than MS_B, accounting for dissimilarity among the grouped data.

4.3 Stable Feature Selection

A stable affective EEG feature should give consistent measurements of the same emotion on the same subject over the course of time, therefore there is the possibility to reduce the need for re-calibration by using stable features. To this end, we propose a stable feature selection method based on ICC score ranking. The proposed method consists of three steps: ICC assessment, ICC score ranking, and iterative feature selection.

We assess the long-term stability of different EEG features with ICC. Let X be the matrix of feature parameters of a specific feature, rows of X correspond to different emotions, and columns of X correspond to different repeated measurements over the course of time. Intuitively, we want the feature parameters to be consistent when measuring the same emotion repeatedly over time. Therefore, we want the parameters within the same row to be similar to each other. Moreover, we want the parameters measuring different affective states to be discriminative, so that different affective states are distinguishable. Therefore, we want different rows to be dissimilar to each other. The ICC measurement takes both considerations into account. The ICC is computed as per (18), which is based on ANOVA. For clarity, we display X in the ANOVA table as shown in Table 5. In Table 5, treatment refers to different emotions induced by specific affective stimuli. x_{ij} is the feature parameter of the j-th measurement of emotion i. $x_\cdot j$ is the sum of all measurements of emotion i, $x_i = \sum_{j=1}^{k} x_{ij}$. \bar{x}_i is the average of all measurements of emotion i, $\bar{x}_i = (1/k) \sum_{j=1}^{k} x_{ij}$. $x_\cdot \cdot$ is the sum of all measurements over all emotions, $x_\cdot \cdot = \sum_{i=1}^{n} x_{i\cdot}$. $\bar{x}_\cdot \cdot$ is the average of all measurements over all emotions, $\bar{x}_\cdot \cdot = (1/nk) \sum_{i=1}^{n} \sum_{j=1}^{k} x_{ij}$.

We can obtain the stability score of each feature by computing the ICC, thereafter, we rank the features according to the stability scores in descending order. Features with higher ICC are more stable over the course of time, and exhibit better discriminability among different emotions. Our proposed feature selection method consists in iteratively selecting the top stable features and validating the inter-session emotion recognition accuracy. The feature subset that yields the best accuracy is retained.

Table 5 The analysis of variance table

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>Sum of squares</th>
<th>Degree of freedom</th>
<th>Mean square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between treatment</td>
<td>$SS_B = \sum_{i=1}^{n} (\bar{x}_i - \bar{x})^2$</td>
<td>$n - 1$</td>
<td>$MS_B = SS_B/(n - 1)$</td>
</tr>
<tr>
<td>Within treatment</td>
<td>$SS_W = SS_T - SS_B$</td>
<td>$nk - n$</td>
<td>$MS_W = SS_W/(nk - n)$</td>
</tr>
<tr>
<td>Total</td>
<td>$SS_T = \sum_{i=1}^{n} \sum_{j=1}^{k} (x_{ij} - \bar{x})^2$</td>
<td>$nk - 1$</td>
<td>$MS_T = SS_T/(nk - 1)$</td>
</tr>
</tbody>
</table>

Table 6 Referenced state-of-the-art affective EEG features

<table>
<thead>
<tr>
<th>Feature (dimension, abbreviation)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 statistics (30, STAT)</td>
<td>[12, 13, 34, 49, 50]</td>
</tr>
<tr>
<td>36 higher order crossings (180, HOC)</td>
<td>[34, 36-38]</td>
</tr>
<tr>
<td>Fractal dimension + 6 statistics + 36 higher order crossings (215, FDI)</td>
<td>[13, 34]</td>
</tr>
<tr>
<td>3 Hjorth (15, HJORTH)</td>
<td>[40, 41]</td>
</tr>
<tr>
<td>Signal energy (5, SE)</td>
<td>[39]</td>
</tr>
<tr>
<td>Spectral power of δ, θ, α, and β bands (20, POW)</td>
<td>[4, 7, 12, 51]</td>
</tr>
</tbody>
</table>

Fig. 3 Division of the EEG trial. EEG data at both ends are discarded. The middle part is retained and divided into two valid segments of the same length. Only valid segments are used for the subsequent processing.

5 Experiments

Based on our dataset, we carry out three simulations of aBCI. In the first simulation, we evaluate the recognition performance of aBCI when it can be re-calibrated from time to time. In the second simulation, we evaluate the long-term recognition performance of aBCI, especially when it operates without re-calibration during the course of usage. In the third simulation, we evaluate our proposed stable feature selection method.

5.1 Simulation 1: With Re-calibration

In this experiment, we simulate the recognition performance of an aBCI where re-calibration of the system can be carried out each time before the subject uses the system. Specifically, we evaluate the within-session cross-validation recognition accuracy using the state-of-the-art affective EEG features referenced in Table 6.

We base the simulation on the EEG data we collected in Section 3. Each EEG trial lasts for 76 seconds. We discard both ends of the EEG trial and retain the middle part of the EEG trial for the subsequent processing, based on the assumption that emotions are better elicited in the middle of the trial. The division of the EEG trial is illustrated in Fig. 3. EEG features are extracted out of the valid segments of the EEG trials on a sliding-window basis. The final feature vector is a concatenation of the feature vectors from channel AF3, F7, FC5, T7, and F4, which were justified in [33] to be the top five discriminative channels concerning emotion recognition. The width of the window is 4...
In this within-session cross-validation evaluation, the training data and test data are from the EEG trials within the same session. As the time gap between the acquisition of training and test data is minimal, the evaluation can approximate the performance of aBCI where calibration is carried out shortly before use. We use one valid segment as the training data and the other as the test data, and repeat the process until each segment has served as the test data for once. The per-session recognition accuracy is averaged across all possible runs. In this case, the evaluation is repeated twice per session, which is referred to as two-fold cross-validation. As we recognize four emotions in each session, the training data comprise 7×4 = 28 samples for four emotions. We adopt the Logistic Regression (LR) [46] classifier. The simulation is implemented on MATLAB R2017a, where we use the MATLAB built-in toolbox for the LR classifier with the default hyperparameters. The evaluation is carried out for each subject on a session-by-session basis. The mean classification accuracy over 16 sessions and the standard deviations are displayed in Table 7.

5.2 Simulation 2: Without Re-calibration

In this experiment, we simulate the recognition performance where no re-calibration is allowed during the long-term use of aBCI. We evaluate the inter-session leave-one-session-out cross-validation accuracy for this purpose. Recall that in our dataset, we have 16 recording sessions per subject throughout the course of eight days. In this evaluation, we reserve one session as the calibration session whose EEG data are used to train the classifier, and pool together the data from the remaining 15 sessions as test data. We repeat the evaluation until each session has served as calibration session for once. In this case, the process will be repeated 16 times per subject, and the reported recognition accuracy is the mean accuracy of 16 runs. This evaluation is to simulate the system performance in the long run, since there is a longer time gap between the training session and testing sessions—up to eight days. We adopt the features referenced in Table 6 in this simulation, in the same sliding-window manner as in Section 5.1. We use only the valid segment (1 see Fig. 3) of each EEG trial and reserve the valid segment 2 for the testing purpose in Simulation 3 introduced in the following section. The sliding-window feature extraction yields 7 samples per valid segment. The training data consist of 7×4 = 28 samples for four emotions recorded in the same session. The test data comprise 7×4×15 = 420 samples pooled together from the remaining 15 sessions. The mean classification accuracy over 16 runs and the standard deviations are displayed in Table 8.

5.3 Simulation 3: Stable Feature Selection

In this experiment, we validate the effect of our proposed stable feature selection method based on the simulation of emotion recognition where no re-calibration is allowed during the long-term use of aBCI. This simulation is similar to Simulation 2, with the focus on the comparison between the state-of-the-art feature set and the stable feature set we propose.

We propose to find the stable features on a subject-dependent basis. The subject-dependent evaluation intends to find subject-specific stable features for each subject. We quantify the long-term feature stability by computing the ICC scores on the
training set consisting of the valid segment 1 (see Fig. 3) from all available trials, rank the features according to the stability scores, and retain the optimal subset of features pertinent to the subject that maximizes the recognition accuracy when iteratively evaluating the inter-session leave-one-session-out cross-validation accuracy using the top n stable features. The results are shown in Table 9 and Fig. 4. After we find the stable features, we evaluate the performance of the stable features on the test set comprising the valid segment 2 (see Fig. 3) from all available trials. The recognition performance on the test set is shown in Table 10.

6 Results and Discussions

6.1 Simulation 1: With Re-calibration

Table 7 shows the mean accuracy ± standard deviation per subject based on two-fold cross-validation evaluation, which simulates the use case where re-calibration is allowed each time before a subject uses aBCI. The recognition accuracies vary between subjects and features, ranging from 28.37 % (Subject 5, HOC) to 76.23 % (Subject 6, FD2). HOC is found to be inferior to other referenced features on all subjects. The best performing feature varies between subjects. For subject 1, 2, 3, 5, and 6, referenced feature set FD2 yields better recognition accuracy than other referenced features. For subject 2, FD2, POW and HJORHTH features give similar performance, outperforming other referenced features. For subject 4, STAT, FD2 and HJORHTH features yield comparable results, being better than other referenced features. In general, FD2 performs well on all subjects in this simulation, which may suggest that FD2 is good for the use case where re-calibration is allowed from time to time.

For a four-class classification task, the theoretical chance level of random guess is 25.00 %. However, it is known that the real chance level is dependent on the classifier as well as the number of test samples. For an infinite number of test samples, the real chance level approaches the theoretical value. For a finite number of test samples, the real chance level is computed based on repeated simulations of classifying samples with randomized class labels, as is suggested in [47, 48]. We carry out such simulation and present also in Table 7 the upper bound of the 95 % confidence interval of the chance level for the best performing feature (in bold) for each subject. Results show that the best-performing features yield recognition accuracy higher than the upper bound of the chance level. We conclude that the best-performing features perform significantly better than the chance level at a 5 % significance level.

6.2 Simulation 2: Without Re-calibration

Table 8 shows the mean accuracy ± standard deviation per subject based on inter-session leave-one-session-out cross-validation evaluation, which simulates the long-term recognition performance of aBCI when no re-calibration is permitted during use. Notable accuracy drop can be observed, compared to when re-calibration is allowed at each new session. This experiment establishes that intra-subject variance of affective feature parameters does exist and does have a negative impact on the recognition performance, though the severity varies from subject to subject. For subject 2 and 3, the recognition performance is severely affected by the variance—the best recognition performance has dropped and fallen within the 95 % confidence interval of the chance level. We therefore conclude that subject 2 and 3 are performing at random guess level. For subject 1, 4 and 6, the best performance remains significantly better than the
features according to stability scores and iteratively selecting the term stability of features with the ICC model, ranking the variance among repeated sessions on different days. We propose course of time, therefore there is the possibility to mitigate the consistent measurements of the same affective state over the affective feature parameters. Ideally, a stable feature should give to use stable features to mitigate the intra-subject variance of the stable features are included into the feature subset that the accuracy quickly deteriorates as features that carry higher than those for the other subjects. The long-term recognition performance of the selected stable features for subject 1 and subject 4 is also notably higher than that for the other subjects. Generally, the higher the stability score, the better the recognition accuracy.

Looking at the subject-dependent feature ranking in Table 11, we can see that the feature ranking exhibits a similar pattern among subject 1, 4, and 6. Statistic features top the stability ranking, together with Hjorth features and some HOCs. However, for subject 2, 3 and 5, different ranking patterns are observed. HOCs are found to be more stable, mixed with some power features and Hjorth features. Interestingly, HOC features have been frequently selected given their relatively high stability scores, despite their mediocre performance as was shown in Simulation 1 in Table 7. It may suggest that HOC features exhibit good stability and are suitable for the use case where the long-term recognition performance shall be put into consideration. However, they might not be the optimal features if re-calibration is allowed from time to time.

6.4 Comparison on the Test Data

We further examine the performance of the stable features on unseen test data comprising Segment 2 (see Fig. 3) of all available trials. To simulate the long-term recognition performance, the same inter-session leave-one-session-out cross-validation evaluation scheme is applied. The stable feature set remains the same as was found on the training data. The recognition accuracy using our proposed stable features as well as the referenced state-of-the-art features is presented in Table 10. The results are principally consistent with the findings based on the training data. Our stable features outperform the best-performing referenced features by 2.54 %, 0.23 %, 3.12 %, 1.92 %, and 1.62 %, for subject 1, 3, 4, 5, and 6, respectively.

6.5 Limitation

In this paper, we have proposed and validated a stable feature selection method for EEG-based emotion recognition on a dataset comprising six subjects. Further studies are needed to conclude the performance on a larger dataset. We have taken a subject-dependent approach to find the subject-specific stable features. Compared to our previous studies [15, 16] where we had taken a subject-independent approach, subject-specific stable features are found to be more effective. However, the effective stable feature set is subject-dependent, to find which requires ample labeled affective EEG data recorded over a long course of time. The acquisition of such data may pose a burden on the subjects. Although the stable features perform relatively better than the referenced state-of-the-art in the long run, the absolute recognition accuracy is still admittedly low. It remains an open question as to how we can effectively mitigate or even eliminate the need for frequent re-calibrations for aBCI.
Comparisons between our stable features and the referenced deteriorates. The experiment results validate our hypothesis.

Unstable features are included, the recognition accuracy quickly.

Feature subset. Experimental results show that recognition accuracy quickly.

Simulation 3, we analyze the performance of stable features occur when the aBCI operates without re-calibration. In

Simulation 2, we simulate the long-term the-art features, where the aBCI is allowed to be re-calibrated from time to time. In Simulation 1, we show the recognition accuracy of an aBCI using the state-of-the-art features. In Simulation 1, we show the recognition accuracy can be

Improved. We carry out extensive comparisons between our

Unstable features contribute to the accuracy deterioration when

We hypothesize that

Consists in modeling the feature stability by ICC, feature ranking

and iterative selection of stabl e features. We hypothesize that

Parameters. Due to these challenges, the recognition accuracy

cannot be maintained if the usage of aBCI prolongs without recalibration. We propose a stable feature selection method to select the optimal feature set that maximizes the recognition accuracy for the long run for aBCI. The proposed method consists in modeling the feature stability by ICC, feature ranking

and iterative selection of stable features. We hypothesize that unstable features contribute to the accuracy deterioration when

The aBCI operates without re-calibration over the course of time, and by using stable features, the recognition accuracy can be improved. We carry out extensive comparisons between our stable features and the state-of-the-art features. In Simulation 1, we show the recognition accuracy of an aBCI using the state-of-the-art features, where the aBCI is allowed to be re-calibrated from time to time. In Simulation 2, we simulate the long-term usage of an aBCI and establish that accuracy deterioration will occur when the aBCI operates without re-calibration. In Simulation 3, we analyze the performance of stable features selected by our proposed method. We demonstrate the accuracy trajectory when we iteratively include features into the selected feature subset. Experimental results show that recognition accuracy peaks at a small subset of stable features, and as more unstable features are included, the recognition accuracy quickly deteriorates. The experiment results validate our hypothesis. Comparisons between our stable features and the referenced state-of-the-art features show that our stable features yield better accuracy than the best-performing referenced features by 1.83 % – 5.85 % on the training set, and by 0.23 % – 2.54 % on the test set.

We stress that existing studies have overlooked the performance evaluation of aBCI during long-term use, which may partly be due to the fact that few existing datasets contain long-term affective EEG recordings. In this paper, we present the SAFE dataset which includes multiple recording sessions spanning across several days for each subject. Multiple sessions across different days were recorded so that the long-term recognition performance of aBCI can be evaluated. We stress that it is equally important to inspect the long-term recognition performance of aBCI. We invite other researchers to test the performance of their aBCI algorithms on this dataset, and especially to evaluate the long-term performance of their methods.

Acknowledgment

This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its International Research Centres in Singapore Funding Initiative.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Subject 1</th>
<th>Subject 2</th>
<th>Subject 3</th>
<th>Subject 4</th>
<th>Subject 5</th>
<th>Subject 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>36.79 ± 6.04</td>
<td>26.80 ± 3.87</td>
<td>26.88 ± 3.97</td>
<td>38.68 ± 5.92</td>
<td>28.38 ± 4.06</td>
<td>31.29 ± 7.76</td>
</tr>
<tr>
<td>HOC</td>
<td>28.68 ± 3.11</td>
<td>24.51 ± 2.84</td>
<td>25.55 ± 3.87</td>
<td>28.62 ± 3.74</td>
<td>25.90 ± 2.67</td>
<td>27.23 ± 4.30</td>
</tr>
<tr>
<td>FD1</td>
<td>30.92 ± 3.58</td>
<td>24.64 ± 3.56</td>
<td>25.95 ± 4.43</td>
<td>35.51 ± 5.57</td>
<td>26.41 ± 2.87</td>
<td>29.99 ± 5.22</td>
</tr>
<tr>
<td>FD2</td>
<td>35.61 ± 5.47</td>
<td>26.44 ± 4.22</td>
<td>27.50 ± 5.37</td>
<td>40.54 ± 5.89</td>
<td>27.47 ± 3.49</td>
<td>31.82 ± 7.93</td>
</tr>
<tr>
<td>HJORTH</td>
<td>31.65 ± 5.86</td>
<td>26.62 ± 2.80</td>
<td>26.82 ± 3.15</td>
<td>38.47 ± 5.85</td>
<td>26.76 ± 2.84</td>
<td>29.64 ± 3.78</td>
</tr>
<tr>
<td>SE</td>
<td>26.28 ± 3.97</td>
<td>26.61 ± 5.40</td>
<td>26.64 ± 2.93</td>
<td>36.98 ± 8.46</td>
<td>28.89 ± 3.40</td>
<td>27.49 ± 5.36</td>
</tr>
<tr>
<td>POW</td>
<td>33.41 ± 7.11</td>
<td>27.95 ± 3.66</td>
<td>28.04 ± 3.14</td>
<td>38.85 ± 8.02</td>
<td>27.65 ± 3.94</td>
<td>31.92 ± 7.68</td>
</tr>
<tr>
<td>Ours</td>
<td>39.33 ± 6.13</td>
<td>26.52 ± 4.23</td>
<td>28.27 ± 3.72</td>
<td>43.66 ± 6.09</td>
<td>30.81 ± 5.11</td>
<td>33.54 ± 6.93</td>
</tr>
</tbody>
</table>

Table 10 Comparison of inter-session leave-one-session-out cross-validation accuracy on the test data between using referenced state-of-the-art feature set and stable feature set selected by our proposed method. Mean accuracy (%) ± standard deviation (%).

Table 11 Feature ranking of the top 10 stable features and their respective ICC scores.

7 Conclusion

An aBCI is an affective interface between the user and the computer that relies on spontaneous EEG signals to function. In many existing aBCI studies, machine learning techniques are leveraged to recognize the affective states, which consist in acquiring the affective EEG signals from the user and calibrating the classifier to the affective pattern of the user. However, affective neural patterns are volatile over time even for the same subject, and intra-subject variance exists in the affective feature parameters. Due to these challenges, the recognition accuracy cannot be maintained if the usage of aBCI prolongs without recalibration. We propose a stable feature selection method to select the optimal feature set that maximizes the recognition accuracy for the long run for aBCI. The proposed method consists in modeling the feature stability by ICC, feature ranking

and iterative selection of stable features. We hypothesize that unstable features contribute to the accuracy deterioration when

Acquisition of the affective EEG signals from the user and calibrating

are leveraged to recognize the affective states, which consist in

acquiring the affective EEG signals from the user and calibrating

the classifier to the affective pattern of the user. However, affective

neural patterns are volatile over time even for the same subject, and

intra-subject variance exists in the affective feature parameters. Due

to these challenges, the recognition accuracy cannot be maintained

if the usage of aBCI prolongs without recalibration. We propose

a stable feature selection method to select the optimal feature set

that maximizes the recognition accuracy for the long run for aBCI.

The proposed method consists in modeling the feature stability

by ICC, feature ranking

and iterative selection of stable features. We hypothesize that

unstable features contribute to the accuracy deterioration when

the aBCI operates without re-calibration over the course of time,

and by using stable features, the recognition accuracy can be

improved. We carry out extensive comparisons between our stable

features and the state-of-the-art features. In Simulation 1, we show

the recognition accuracy of an aBCI using the state-of-the-art

features, where the aBCI is allowed to be re-calibrated from time
to time. In Simulation 2, we simulate the long-term usage of an

aBCI and establish that accuracy deterioration will occur when

the aBCI operates without re-calibration. In Simulation 3, we

analyze the performance of stable features selected by our

proposed method. We demonstrate the accuracy trajectory when

we iteratively include features into the selected feature subset.

Experimental results show that recognition accuracy peaks at a

small subset of stable features, and as more unstable features are

included, the recognition accuracy quickly deteriorates. The

experiment results validate our hypothesis. Comparisons between

our stable features and the referenced state-of-the-art features

show that our stable features yield better accuracy than the

best-performing referenced features by 1.83 % – 5.85 % on the

training set, and by 0.23 % – 2.54 % on the test set.

We stress that existing studies have overlooked the performance

evaluation of aBCI during long-term use, which may partly be

due to the fact that few existing datasets contain long-term affective

EEG recordings. In this paper, we present the SAFE dataset which

includes multiple recording sessions spanning across several days

for each subject. Multiple sessions across different days were

recorded so that the long-term recognition performance of aBCI

can be evaluated. We stress that it is equally important to inspect

the long-term recognition performance of aBCI. We invite other

researchers to test the performance of their aBCI algorithms on

this dataset, and especially to evaluate the long-term performance

of their methods.

Acknowledgment

This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its International Research Centres in Singapore Funding Initiative.

References

