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 An affective brain-computer interface (aBCI) is a direct communication pathway between 
human brain and computer, via which the computer tries to recognize the affective states of its 
user and respond accordingly. As aBCI introduces personal affective factors into human-
computer interaction, it could potentially enrich the user’s experience during the interaction. 
Successful emotion recognition plays a key role in such a system. The state-of-the-art aBCIs 
leverage machine learning techniques which consist in acquiring affective 
electroencephalogram (EEG) signals from the user and calibrating the classifier to the affective 
patterns of the user. Many studies have reported satisfactory recognition accuracy using this 
paradigm. However, affective neural patterns are volatile over time even for the same subject. 
The recognition accuracy cannot be maintained if the usage of aBCI prolongs without 
recalibration. Existing studies have overlooked the performance evaluation of aBCI during 
long-term use. In this paper, we propose SAFE—an EEG dataset for stable affective feature 
selection. The dataset includes multiple recording sessions spanning across several days for 
each subject. Multiple sessions across different days were recorded so that the long-term 
recognition performance of aBCI can be evaluated. Based on this dataset, we demonstrate that 
the recognition accuracy of aBCIs deteriorates when re-calibration is ruled out during long-term 
usage. Then, we propose a stable feature selection method to choose the most stable affective 
features, for mitigating the accuracy deterioration to a lesser extent and maximizing the aBCI 
performance in the long run. We invite other researchers to test the performance of their aBCI 
algorithms on this dataset, and especially to evaluate the long-term performance of their 
methods. 

1 Introduction 
Emotions are a crucial element in our everyday 

communication. Though intuitive to humans, it remains a 
challenging task for a computer to perceive the emotions of its 
user. Affective computing, as an emerging research topic that 
seeks to develop emotion-aware systems to recognize, interpret 
and process human emotion, has received increasing attention in 
recent years. Early works have focused on analyzing the 
physiological responses to recognize emotions, such as heart rate 
[1], skin conductance [2], etc. These physiological responses are 
regulated by the autonomic nervous systems under the influence 
of emotions, hence the possibility to interpret emotions by 
measuring such responses. More recent studies have targeted the 
brain's role in perceiving and regulating emotions [3], giving rise 
to the affective brain-computer interface (aBCI). An 
electroencephalogram (EEG)-based aBCI is a direct 
communication pathway between human brain and computer by 

means of spontaneous EEG signals, bypassing the conventional 
pathways of peripheral nerves and muscles. Such an affective 
interface could potentially enrich the user's experience during 
the interaction with a computer if the computer is enabled to feel 
and respond to human emotions. In applications, an aBCI 
operates in such a paradigm that forms a loop as diagrammed in 
Fig. 1. In this paradigm, there are notably three core parts: signal 
acquisition, emotion classification, and feedback to the user. The 
user generates EEG signals, which are captured by the EEG 
device. The EEG signals are then analysed and classified, and 
the classification results are fed into an application which 
executes subroutines according to the recognized emotions. 
Feedback is then given to the user. Successful emotion 
recognition plays a key role in aBCI as it highly affects the 
quality of such an interface. The state-of-the-art aBCI leverages 
machine learning techniques which consist in acquiring affective 
EEG signals from the user and calibrating the classifier to the 
affective patterns of the user. Many studies about aBCI have 
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reported satisfactory recognition accuracy using this paradigm 
[4-14]. In these studies, affective EEG data were collected 
within a relatively short period, and k-fold cross-validations 
were carried out to evaluate the recognition accuracy. In a k-fold 
cross-validation, the EEG data are segmented into k 
nonoverlapping sections: k-1 folds are used to train the classifier, 
and the remaining fold is used to test the recognition accuracy. 
However, due to the volatility of affective neural patterns, the 
recognition accuracy cannot be maintained if the usage of aBCI 
prolongs without re-calibrating the classifier. The recognition 
accuracy assessed by cross-validating short-term EEG data is 
over-optimistic and can hardly represent the system performance 
in the long run. On the other hand, there is little study on the 
long-term recognition performance of aBCI, which may partly 
be due to the fact that few existing affective EEG datasets 
contain recordings over a long course of time. 

We devote this paper to presenting an EEG dataset that 
contains multiple recordings on the same day and different days 
of the same subjects, and to the investigation of aBCI 
performance over a long course of time. As the (re-)calibration 
process may be time-consuming, tedious and laborious, we are 
motivated to mitigate the burden of frequent re-calibrations on 
the user. Ideally, a stable affective EEG feature should give 
consistent measurements of the same emotion on the same 
subject over a long course of time. We presented a pilot study on 
the stability of affective EEG features in [15, 16], where we 
hypothesize that using stable EEG features may improve the 
long term recognition accuracy, while unstable features may 
worsen the recognition performance of the BCI in the long run. 
In [17], we propose a stable feature selection method to choose 
the optimal set of stable features that maximize the recognition 
accuracy of the system in the long run. In this paper, we aim at 
introducing the dataset used in our previous study [17], and 
make it available to the public1. We invite other researchers to 
test the performance of their aBCI algorithms on this dataset, and 
especially to evaluate the long-term performance of their 
methods. 

This paper is organized as follows. Section 2 reviews the 
existing affective EEG datasets. Section 3 documents our data 
collection procedures. Section 4 introduces our proposed stable 
feature selection method. Section 5 elaborates on the simulations 

to evaluate the short-term and long-term performance of aBCI. 
Section 6 presents the results with discussions. Section 7 
concludes this paper. 

2 Review of existing affective EEG datasets 
There are a few affective datasets available that contain EEG 

recordings. The enterface (2006, [18]) dataset includes the EEG 
and functional near-infrared spectroscopy (fNIRS) recorded 
from 5 subjects. They adopted the pictorial affective stimuli 
from the International Affective Picture System (IAPS) to 
induce 3 emotions (calm, positive exiting, and negative exciting) 
on the subjects. The EEG signals were captured by a Biosemi 
Active II device with 54 effective EEG channels at a sampling 
rate of 1024 Hz. The MAHNOD HCI (2012, [19]) dataset 
provides the EEG recordings along with other physiological 
signals carried out on 27 subjects. Emotional video clips 
extracted from movies and online repositories were used as 
affective stimuli to elicit 6 emotions (disgust, amusement, joy, 
fear, sadness, and neutral). A 32-channel Biosemi Active II 
device was used to record the EEG signals. The DEAP (2012, 
[20]) dataset consists of the EEG and other peripheral 
physiological signals collected from 32 subjects using the 
Biosemi Active II device. Forty 1-minute-long music videos 
were chosen as affective stimuli. After the exposure to each 
emotional stimulus, the subject was required to provide feedback 
on his/her truly felt emotion in the form of the Self-Assessment 
Manikin (SAM) questionnaire [21]. The SAM feedback was 
regarded as the truth as to what emotion has been elicited on the 
subject. In these three datasets, the emotion elicitation 
experiment and EEG data collection were carried out on each 
subject within 1-2 hours in one day. No repeated elicitation 
experiment or EEG data collection is made on the same subject 
on different days. That is to say, the affective EEG data were 
collected within a relatively short period for each subject and 
therefore, these datasets are not suitable for the evaluation of the 
long-term classification performance of aBCIs. The SEED 
(2015, [22]) dataset is the first dataset that provides repeated 
affective EEG recordings on the same subject on different days. 
The SEED dataset comprises the EEG recordings from 15 
subjects for 3 emotions (positive, neutral, and negative). Fifteen 
Chinese movie excerpts were selected as affective stimuli in the 
emotion induction experiment. The EEG signals were collected 
by an ESI NeuroScan system equipped with 64 channels. The 
emotion induction experiment and EEG data collection were 
carried out on each subject three times on three different days. 
Hence, this dataset makes possible the evaluation of long-term 
performance of aBCI. 

Our dataset introduced in this paper complements the 
abovementioned existing datasets in two ways. Firstly, the 
existing datasets [18-20, 22] were collected using specialized, 
costly EEG devices such as Biosemi Active II (in [18-20]) and 
ESI NeuroScan (in [22]). Although these systems may provide 
better signal quality, they are bulky and not quite suitable for 
casual usage in everyday applications. In our dataset, we opt for 
a low-cost, portable, consumer-grade EEG headset, which better 
simulates the application scenario an average user would 
encounter in everyday applications. Secondly, the SEED dataset 
included 3 repeated measurements of the same induced affective 
states on 3 different days. In our dataset, we extend the repeated 

________ 
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Fig. 1 A general affective brain-computer interface (aBCI) paradigm. 
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measurements to 16 times in a course of 8 days. We carry out 
two repetitions per day and thus, our dataset provides not only 
repeated recordings of the same induced affective states across 
different days, but also on the same days. In the next section, we 
elaborate on the experiment procedures for our data collection. 

3 Data collection 

3.1 Affective Stimuli Selection 
The selection of affective stimuli plays a role in successful 

emotion elicitation. We select audio stimuli with known 
affective attributes from the International Affective Digitized 
Sounds (IADS, [23]) library. IADS is an established affective 
stimuli library that provides normative emotion stimuli for 
emotion induction experiment. IADS contains a collection of 
167 sound clips, each lasting for 6 seconds. The affective 
attributes of each sound clip have been rated by and averaged 
over a pool of 100 subjects in terms of valence, arousal, and 
dominance in accordance with Mehrabian and Russel's 3D 
emotional model [24] on a scale of 1-9. By using the 3D 
emotional model, emotions boil down to and are quantified by 
three orthogonal dimensions. The valence (V) dimension 
measures how pleasant an emotion is, ranging from unpleasant 
to pleasant. For example, both frightened and sad are unpleasant 
emotions and rated low in valence, whereas happy and surprised 
are pleasant emotions that score high in valence. Likewise, the 
arousal (A) dimension quantifies how activated an emotion is, 
ranging from inactive/calm to active/excited. For instance, sad is 
a lowly activated emotion whereas frightened is a highly 
activated emotion. The dominance (D) dimension reveals the 
dominating power associated with an emotion, ranging from 
submissive (lack of control) to dominating (in control of 
everything). When a person feels frightened, he/she lacks control 
of the surroundings and feels submissive. When a person feels 
angry, he/she stands in a dominating position, tends to aggress 
and is at a high dominance level. If we consider each dimension 
to be binary – either high (H) or low(L) – then the 3D emotional 
model identifies a total of 8 emotions: HVHAHD, HVHALD, 
HVLAHD, HVLALD, LVHAHD, LVHALD, LVLAHD, and 
LVLALD. Out of the eight emotions, we intend to induce the 
four emotions that are common in everyday life: HVLAHD 
(pleasant), HVHAHD (happy), LVHALD (frightened), and 
LVHAHD (angry). 

To find stimuli that induce the four desired emotions in 
IADS, we consider rating equal to 5 as a threshold. Rating 
smaller than 5 is considered low while that larger than 5 is 
considered high. We then select ten stimuli from IADS for each 
emotion class, as is shown in Table 1. For instance, the stimuli 
to induce pleasant emotion include those whose valence ratings 
are larger than 5, arousal ratings smaller than 5, and dominance 
ratings larger than 5. Likewise, the same threshold applies to the 
other emotions except angry, where there are not enough ten 
stimuli with dominance rated higher than 5, and we marginally 
lower the threshold to allow dominance rated higher than 4 to be 
selected. 

3.2 Data Collection Protocol 
The data collection was carried out in a laboratory 

environment with controlled illumination. The EEG data were 

recorded with an Emotiv EPOC headset on the project PC. The 
Emotiv EPOC headset is a lightweight, portable and wireless 
EEG device. Specifically, the Emotiv EPOC was chosen 
because it is more likely to be used by the general consumers in 
a casual, everyday application than the costly, research-grade but 
bulky EEG device. Despite being affordable, the signal quality 
of EEG data recorded with Emotiv EPOC has been rigorously 
examined and compared to that of the NeuroScan device, a 
research-grade EEG system, leading to the conclusion that 
Emotiv EPOC compares well with NeuroScan for the reliable 
auditory ERPs (Event Related Potentials) [25, 26]. Other 
seminal studies validating the result quality produced by Emotiv 
EPOC can be found in [27-30]. 

In existing datasets, e.g., enterface [18], MAHNOD HCI 
[19], and DEAP [20], EEG data were collected within a 
relatively short period in one single day for each subject. 
However, we stress that datasets with EEG recording limited to 
a relatively short time span are not enough for the evaluation of 
long-term aBCI performance. With this in mind, our data 
collection experiment was designed such that multiple EEG data 
recording sessions within the same day and across different days 
are carried out for each subject. 

As shown in Fig. 2, for each subject, we carried out 16 
recording sessions in a course of 8 days. Specifically, we 
conducted 2 recording sessions per day for each subject, one in 
the morning and the other in the afternoon. Each session 
consisted of four trials corresponding to four targeted emotions. 
The sequence of emotion induction was as such that trials 1 to 4 
corresponded to pleasant, happy, frightened, and angry emotion, 
respectively. During each trial, the EEG recording started with a 
"tick" sound, following which a 16-second silent interval was 
given to the subject to get prepared for the stimuli exposure. 
After that, ten IADS stimuli were presented to the subject in the 
order shown in Table 1. The EEG recording of one trial lasted 
for 76 seconds. As soon as the stimuli presentation ended, the 
subject was required to fill out the self-assessment questionnaire, 
during which the EEG signals were not recorded. For the self-
assessment, we adopted the modified Self-Assessment Manikin 
(SAM) questionnaire as was used in [20] for the DEAP dataset. 
Specifically, the subject needed to self-assess the emotional 
experience during stimuli exposure from these five dimensions 
on a scale of 1-9: the valence, arousal, and dominance 
dimensions in line with Mehrabian and Russel's 3D emotion 
model [24], plus the liking and the familiarity dimensions. The 
valence scale ranges from unpleasant to pleasant. The arousal 

 

Fig. 2 Protocol of emotion induction experiment. 
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scale ranges from inactive to active. The dominance scale ranges 
from submissive to dominating. The liking scale ranges from 
disliking to liking, which is a personal preference of the subject 
and not to be confused with the valence dimension. The 
familiarity scale ranges from unfamiliar to familiar. 

Six subjects participated in our data collection experiment (5 
males and 1 female, aged 24-28). All subjects reported no history 
of mental diseases or head injuries. Prior to the commencement 
of the experiment, the procedure of the experiment, the use of 
self-assessment questionnaire and the meaning of each affective 
attribute (e.g., valence) have been well-explained to the subject 
both verbally and in writing. The experiment would proceed 
only if the subject expressed sufficient understanding of the 
affective attributes. Written consent was obtained from the 
subject before we proceed to data collection. During the 
experiment, the experimenter assisted the subject in setting up 
the EEG device. The start/stop of recording was controlled by 
the experimenter. The subject was seated approximately 1 meter 

from the screen of the project PC and wearing a pair of 
earphones with the volume properly adjusted. The subject was 
told to sit back and rest the arms on the armrests with minimum 
muscle movement to avoid contaminating the EEG signals. 
After each recording, the experimenter administered the digital 
questionnaire to the subject for the self-assessment. The subject 
completed the questionnaire on the same project PC, where the 
EEG recordings were saved together with the respective self-
assessment responses. 

3.3 Analysis of affective rating responses 
The self-assessment questionnaires collected from the 

subjects were analyzed to examine the effect of our emotion 
elicitation experiment. We first analyzed the variation of 
affective ratings across different sessions, where we computed 
the mean and standard deviation of the affective ratings collected 
from each subject across the sixteen sessions. As shown in Table 
2, the standard deviations are mostly smaller than 1. This 

Table 1 Selected IADS stimuli for the emotion induction experiment. Valence: from unpleasant = 1 to pleasant = 9. Arousal: from inactive = 1 to active = 9. 
Dominance: from submissive = 1 to dominating = 9. 

Targeted emotion IADS Index Stimulus description Valence (mean ± std) Arousal (mean ± std) Dominance (mean ± std) 
Pleasant 
(HVLAHD) 

150 Seagull 6.95 ± 1.64 4.38 ± 1.64 5.91 ± 1.80
151 Robin’s chirping 7.12 ± 1.56 4.47 ± 1.56 5.73 ± 1.92
171 Country night 5.59 ± 1.79 3.71 ± 1.79 5.52 ± 1.77
172 Brook 6.62 ± 1.69 3.36 ± 1.69 6.21 ± 1.86
377 Rain 5.84 ± 1.73 3.93 ± 1.73 5.70 ± 1.89
809 Harp 7.44 ± 1.41 3.36 ± 1.41 6.29 ± 1.87
810 Beethoven’s music 7.51 ± 1.66 4.18 ± 1.66 6.07 ± 1.92
812 Choir 6.90 ± 1.69 3.43 ± 1.69 5.69 ± 1.90
206 Shower 6.20 ± 1.60 4.40 ± 1.60 5.62 ± 1.61
270 Whistling 6.10 ± 1.83 4.23 ± 1.83 5.85 ± 1.93

  Mean 6.63 ± 1.66 3.95 ± 1.66 5.86 ± 1.85
Happy 
(HVHAHD) 

109 Carousel 6.40 ± 2.13 5.64 ± 2.13 5.69 ± 1.93
254 Video game 6.17 ± 1.65 5.58 ± 1.65 6.25 ± 2.05
351 Applause 7.32 ± 1.62 5.55 ± 1.62 6.74 ± 1.71
716 Slot machine 7.00 ± 2.17 6.44 ± 2.17 6.54 ± 2.03
601 Colonial music 6.53 ± 1.66 5.84 ± 1.66 5.73 ± 1.58
367 Casino 2 7.33 ± 1.74 6.72 ± 1.74 6.41 ± 1.98
366 Casino 1 7.09 ± 1.73 6.26 ± 1.73 6.08 ± 2.19
815 Rock & Roll music 7.90 ± 1.53 6.85 ± 1.53 6.86 ± 1.99
817 Bongos 7.67 ± 1.46 7.15 ± 1.46 6.44 ± 1.73
820 Funk music 6.94 ± 1.98 5.87 ± 1.98 5.97 ± 1.80

  Mean 7.04 ± 1.77 6.19 ± 1.77 6.27 ± 1.90
Frightened 
(LVHALD) 

275 Screaming 2.05 ± 1.62 8.16 ± 1.62 2.55 ± 2.01
276 Female screaming 2 1.93 ± 1.63 7.77 ± 1.63 2.69 ± 2.02
277 Female screaming 3 1.63 ± 1.13 7.79 ± 1.13 2.32 ± 1.78
279 Attack 1 1.68 ± 1.31 7.95 ± 1.31 2.30 ± 1.94
284 Attack 3 2.01 ± 1.48 7.05 ± 1.48 2.99 ± 2.00
285 Attack 2 1.80 ± 1.56 7.79 ± 1.56 2.41 ± 2.02
286 Victim 1.68 ± 1.18 7.88 ± 1.18 2.31 ± 2.03
290 Fight 1.65 ± 1.27 7.61 ± 1.27 2.89 ± 2.05
292 Male screaming 1.99 ± 1.41 7.28 ± 1.41 2.82 ± 1.78
422 Tire skids 2.22 ± 1.47 7.52 ± 1.47 2.62 ± 1.77

  Mean 1.86 ± 1.41 7.68 ± 1.41 2.59 ± 1.94
Angry 
(LVHAHD) 

116 Buzzing 3.02 ± 1.65 6.51 ± 1.65 4.14 ± 2.11
243 Couple sneeze 3.86 ± 1.70 5.19 ± 1.70 4.23 ± 1.90
251 Nose blow 4.16 ± 2.02 5.14 ± 2.02 4.44 ± 1.89
380 Jack hammer 3.70 ± 1.88 6.33 ± 1.88 4.18 ± 1.93
410 Helicopter 2 4.86 ± 1.48 5.89 ± 1.48 4.59 ± 1.55
423 Injury 3.31 ± 1.79 6.23 ± 1.79 4.22 ± 1.89
702 Belch 4.45 ± 2.57 5.37 ± 2.57 5.23 ± 2.04
706 War 4.16 ± 1.68 5.30 ± 1.68 4.55 ± 1.82
729 Paper 2 4.30 ± 1.69 5.79 ± 1.69 5.33 ± 2.27
910 Electricity 3.86 ± 1.83 6.18 ± 1.83 4.03 ± 1.84

  Mean 3.97 ± 1.83 5.79 ± 1.83 4.49 ± 1.92
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suggests that the subjects have given consistent ratings in 
relation to each targeted emotion across different sessions, 
which accounts for a low variation in feeling the same emotion 
across different sessions. At first glance, the mean values of 
ratings in Table 2 are trending similarly to the ratings of IADS 
stimuli shown in Table 1 for the respective emotion. We further 
validate this by computing the Pearson correlation coefficients 
between the subject's self-assessment ratings and the IADS 
stimulus ratings in all sessions, as shown in Table 3. The results 
show significant positive correlation (α = 0.05, with Bonferroni 
correction). The significant correlation between the subject's 
self-assessment ratings and the IADS ratings suggests that the 
subject's feelings are largely in agreement with what the 
affective stimuli intend to elicit. It can be reasonably assumed 
that the subject felt the targeted emotions during the emotion 
elicitation experiment. 

Additionally, we computed the pairwise Pearson correlation 
coefficients among valence, arousal, dominance, liking and 
familiarity of the subject's self-assessment ratings. The 
correlations are mostly insignificant between arousal and 
valence and between arousal and dominance. This may suggest 
that the subjects are able to differentiate these affective attributes 
well. However, it is worth mentioning that the correlation is 
significant between valence and liking and between dominance 
and liking on all subjects (α = 0.05, with Bonferroni correction), 
as presented in Table 4. Without implication of any causality, 
the direct correlation between valence and liking implies that a 
subject tends to like pleasant stimuli, and dislike unpleasant 
stimuli. Likewise, the direct correlation between dominance and 
liking implies that a subject tends to like the stimuli that make 
the subject feel dominating, and dislike the stimuli that make the 
subject feel submissive. 

4 Proposed stable feature selection methods 
In this section, we describe the approaches to our proposed 

feature selection algorithm. Firstly, we review EEG feature 
extraction methods in 4.1. Then, we introduce an ANOVA-
based stability measurement model called Intra-class 
Correlation Coefficient (ICC) in 4.2. Our proposed feature 
selection algorithm is presented in 4.3. 

4.1 Feature Extraction 
4.1.1 Fractal Dimension 

Let 𝒙 ∈ ℝ௡  denote a column vector of 𝑛  EEG time series 
samples (raw signals) from one channel. Construct 𝑘 new time 
series by re-sampling 𝒙 as follows. 𝒙௞௠  =  ቂ𝒙(𝑚), 𝒙(𝑚 + 𝑘), … , 𝒙 ቀ𝑚 + ቔ௡ି௠௞ ቕ 𝑘ቁቃୃ , 𝑚 = 1, 2, … , 𝑘, (1) 

where ⌊∙⌋ denotes the floor function, 𝑚  the initial time series 
sample and 𝑘 the interval. We compute the length of the curve 
for each new series as follows. 

 𝑙௞௠ = ଵ௞  ቊቆ∑ |𝒙(𝑚 + 𝑖𝑘) − 𝒙(𝑚 + (𝑖 − 1)𝑘)|ቔ೙ష೘ೖ ቕ௜ୀଵ ቇቋ ቆ ௡ିଵቔ೙ష೘ೖ ቕ௞ቇ, (2) 

Let 𝑙௞  denote the mean of 𝑙௞௠  for 𝑚 =  1, 2, …  𝑘, the fractal 
dimension of time series 𝒙 is computed as [31] 

 𝐹𝐷 = − lim௞→ஶ ୪୭୥(௟ೖ)୪୭୥(௞) ,  (3) 

Apparently, in numerical evaluation, it is not possible for 𝑘 
to be infinite. It has proven [32, 33] that the computed fractal 
value approximates the true, theoretical fractal value reasonably 
well given a reasonably large 𝑘. Based on the study in [33], k = 
32 yields a good balance between accuracy and computational 
resources required. In this study, we follow the same parameter 
setting. 

4.1.2 Statistics 

Table 3 Pearson correlation coefficients between subject's self-assessment 
ratings and IADS stimulus ratings. 

Subject Valence Arousal Dominance 
1 0.9655 0.8288 0.8881
2 0.9324 0.6009 0.9498
3 0.8679 0.8162 0.8037
4 0.8559 0.7069 0.8206
5 0.8949 0.6494 0.7937
6 0.8935 0.8189 0.8870

 

Table 2 Mean ± standard deviation of subject's self-assessment ratings 
across sixteen sessions. Valence: from unpleasant = 1 to pleasant = 9. 
Arousal: from inactive = 1 to active = 9. Dominance: from submissive = 1 
to dominating = 9. 

Subject Targeted 
Emotion 

Valence Arousal Dominance 

1 Pleasant 7.81 ± 0.40 2.56 ± 0.51 6.75 ± 0.45
Happy 7.63 ± 0.50 6.88 ± 1.02 6.38 ± 0.62
Frightened 2.06 ± 0.25 6.75 ± 0.68 3.31 ± 0.48
Angry 3.31 ± 0.48 5.81 ± 0.66 4.06 ± 0.44

2 Pleasant 7.69 ± 0.87 3.56 ± 1.03 6.81 ± 0.66
Happy 8.56 ± 0.51 8.81 ± 0.40 7.38 ± 0.50
Frightened 1.06 ± 0.25 7.00 ± 0.63 2.25 ± 0.45
Angry 1.38 ± 0.62 3.44 ± 0.51 3.81 ± 0.40

3 Pleasant 6.44 ± 0.63 2.38 ± 0.81 7.00 ± 0.63
Happy 6.19 ± 0.40 6.19 ± 0.40 6.25 ± 0.45
Frightened 3.56 ± 0.63 6.25 ± 0.45 3.56 ± 0.73
Angry 3.63 ± 0.50 6.19 ± 0.40 6.44 ± 0.51

4 Pleasant 5.44 ± 0.73 4.00 ± 1.10 6.25 ± 0.77
Happy 6.88 ± 0.72 6.50 ± 1.21 7.13 ± 0.89
Frightened 3.19 ± 0.40 6.81 ± 0.83 3.06 ± 0.44
Angry 3.38 ± 0.50 6.38 ± 0.50 6.75 ± 0.45

5 Pleasant 7.25 ± 0.45 3.38 ± 1.15 6.38 ± 1.36
Happy 7.75 ± 0.45 7.31 ± 0.48 7.56 ± 0.51
Frightened 2.69 ± 0.48 6.69 ± 1.01 3.19 ± 1.22
Angry 2.75 ± 1.34 7.06 ± 1.48 4.19 ± 1.42

6 Pleasant 5.63 ± 0.62 3.00 ± 1.15 7.00 ± 0.37
Happy 6.63 ± 0.62 6.25 ± 0.58 7.00 ± 0.37
Frightened 3.06 ± 0.44 6.88 ± 0.34 3.06 ± 0.25
Angry 3.44 ± 0.51 6.38 ± 0.81 3.69 ± 1.01

Table 4 Pearson correlation coefficients between valence and liking and 
between dominance and liking of subject's self-assessment ratings. 

Subject Valence-Liking Dominance-Liking 
1 0.9681 0.9203 
2 0.9635 0.9076 
3 0.9076 0.5494 
4 0.8426 0.4660 
5 0.9477 0.7790 
6 0.9446 0.8969 
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Six statistical features were adopted in [34] for EEG-based 
emotion recognition, which, in combination with the fractal 
dimension feature, have been demonstrated to improve the 
classification accuracy [34]. Six statistical features are computed 
as follows. 

Mean of the raw signals: 

 𝜇௫ = ଵ௡ ∑ 𝒙(𝑖)௡௜ୀଵ , (4) 

Standard deviation of the raw signals: 

 𝜎௫ = ට ଵ௡ିଵ ∑ (𝒙(𝑖) − 𝜇௫)ଶ௡௜ୀଵ , (5) 

Mean of the absolute values of the first order differences of 
the raw signals: 

 𝛿௫ = ଵ௡ିଵ ∑ |𝒙(𝑖 + 1) − 𝒙(𝑖)|௡ିଵ௜ୀଵ ,  (6) 

Mean of the absolute values of the first order differences of 
the normalized signals: 

 𝛿ሚ௫ = ଵ௡ିଵ ∑ |𝒙෥(𝑖 + 1) − 𝒙෥(𝑖)| = ఋೣఙೣ௡ିଵ௜ୀଵ ,  (7) 

Mean of the absolute values of the second order differences 
of the raw signals: 

 𝛾௫ = ଵ௡ିଶ ∑ |𝒙(𝑖 + 2) − 𝒙(i)|௡ିଶ௜ୀଵ ,  (8) 

Mean of the absolute values of the second order differences 
of the normalized signals: 

 𝛾෤௫ = ଵ௡ିଶ ∑ |𝒙෥(𝑖 + 2) − 𝒙෥(𝑖)| = ఊఙೣೣ௡ିଶ௜ୀଵ .  (9) 

In (7) and (9), 𝒙෥ denotes the normalized (zero mean, unit 
variance) signals, i.e., 𝒙෥ = (𝒙 − 𝜇௫)/𝜎௫. 

4.1.3 Spectral Band Power 
Spectral band power, or simply “power”, is one of the most 

extensively used features in EEG-related research [4, 6, 10, 12, 
14]. It is common practice to partition the EEG power spectrum 
into several sub-bands (though the frequency range may slightly 
differ from case to case): alpha band, theta band, and beta band, 
etc. In our study, the EEG power features from theta band (4 – 8 
Hz), alpha band (8 – 12 Hz), and beta band (12 – 30 Hz) are 
computed. 

The power features are obtained by first computing the 
Fourier Transform on the EEG signals. The discrete Fourier 
Transform converts a series 𝒙 = ሾ𝒙(0), 𝒙(1), … , 𝒙(𝑁 − 1)ሿୃ  to 
another series 𝒔 = ሾ𝒔(0), 𝒔(1), … , 𝒔(𝑁 − 1)ሿୃ  in a frequency 
domain. 𝒔 is computed as 

 𝒔(𝑘) = ∑ 𝒙(𝑛)𝑒ିೕమഏೖ೙ಿேିଵ௡ୀ଴ , (10) 

where 𝑁 is the number of points in the series. Then, the power 
spectrum density is computed as 

 𝒔ො(𝑘) = ଵே |𝒔(𝑘)|ଶ,  (11) 

Lastly, the spectral band power features are computed by 
averaging the power spectrum density 𝒔ො(𝑘)  over the targeted 
sub-band. E.g., the alpha band power is computed by averaging 𝒔ො(𝑘) over 8 – 12 Hz. 

4.1.4 Higher Order Crossing 
Higher Order Crossing (HOC) was proposed in [35] to 

capture the oscillatory pattern of time series, and used in [34, 36-
38] as feature to recognize human emotion from EEG signals. 
The HOC is computed by first zero-meaning the time series 𝒙 as 

 𝒛(𝑖) = 𝒙(𝑖) − 𝜇௫, (12) 

where 𝒛 is the zero-meaned series of 𝒙 and 𝜇௫  the mean of 𝒙 
computed as per (4). Then, a sequence of filters ∇ is successively 
applied to 𝒛, where ∇ is the backward difference operator, ∇≡𝒛(𝑖) − 𝒛(𝑖 − 1). Denote the kth-order-filtered series of 𝒛 as 𝝃௞(𝒛), 𝝃௞(𝒛) is obtained by iteratively applying ∇ to 𝒛, as 

 𝝃௞(𝒛) = ∇௞ିଵ𝒛, ∇଴𝒛 = 𝒛. (13) 

Then, as its name suggests, the feature consists in counting 
the number of zero-crossing, which is equivalent to the times of 
sign changes, in 𝝃௞(𝒛). We follow [34] and compute the HOC 
feature of order k = 1, 2, 3, …, 36. 

4.1.5 Signal Energy 
The signal energy is the sum of squared amplitude of the 

signal [39], computed as 

 ε = ∑ |𝒙(𝑖)|ଶ௜ .  (14) 

4.1.6 Hjorth Feature 
Hjorth [40] proposed three features for time series, which 

have been used as affective EEG features in [41, 42]. 

Activity: 

 𝑎(𝒙) = ଵ௡ ∑ (𝒙(𝑖) − 𝜇௫)ଶ௡௜ୀଵ , (15) 

where 𝜇௫ is the mean of 𝒙 computed as per (4). 

Mobility: 

 𝑚(𝒙) = ට୴ୟ୰(𝒙ሶ )୴ୟ୰(𝒙),  (16) 

where 𝒙ሶ  is the time derivative of time series 𝒙, and var(·) is the 
variance operator. 

Complexity: 

 𝑐(𝒙) = ௠(𝒙ሶ )௠(𝒙), (17) 

which is the mobility of the time derivative of 𝒙  over the 
mobility of 𝒙. 

4.2 Feature Stability Measurement 
The stability of feature parameters was quantified by the 

Intraclass Correlation Coefficient (ICC). ICC allows the 
assessment of similarity in grouped data. It describes how well 
the data from the same group resemble each other. ICC was often 
used in EEG stability study [43, 44]. ICC is derived from a one-
way ANOVA model and defined as [45] 

 ICC = ெௌಳିெௌೈெௌಳା(௞ିଵ)ெௌೈ,  (18) 

where 𝑀𝑆஻ , 𝑀𝑆ௐ and 𝑘 denote the mean square error between 
groups, the mean square error within group, and the number of 
samples in each group, respectively. A larger ICC value 
indicates higher similarity among the grouped data. ICC tends to 
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one when there is absolute agreement among the grouped data, 
i.e., 𝑀𝑆ௐ = 0. A smaller ICC value suggests a lower similarity 
level. ICC value can drop below zero in the case when 𝑀𝑆ௐ is 
larger than 𝑀𝑆஻, accounting for dissimilarity among the grouped 
data. 

4.3 Stable Feature Selection 
A stable affective EEG feature should give consistent 

measurements of the same emotion on the same subject over the 
course of time, therefore there is the possibility to reduce the 
need for re-calibration by using stable features. To this end, we 
propose a stable feature selection method based on ICC score 
ranking. The proposed method consists of three steps: ICC 
assessment, ICC score ranking, and iterative feature selection. 

We assess the long-term stability of different EEG features 
with ICC. Let 𝑿 be the matrix of feature parameters of a specific 
feature, rows of 𝑿  correspond to different emotions, and 
columns of 𝑿  correspond to different repeated measurements 
over the course of time. Intuitively, we want the feature 
parameters to be consistent when measuring the same emotion 
repeatedly over time. Therefore, we want the parameters within 
the same row to be similar to each other. Moreover, we want the 
parameters measuring different affective states to be 
discriminative, so that different affective states are 
distinguishable. Therefore, we want different rows to be 
dissimilar to each other. The ICC measurement takes both 
considerations into account. The ICC is computed as per (18), 
which is based on ANOVA. For clarity, we display 𝑿 in the 
ANOVA table as shown in Table 5. In Table 5, treatment refers 
to different emotions induced by specific affective stimuli. 𝑥௜௝ is 
the feature parameter of the j-th measurement of emotion 𝑖. 𝑥௜∙ is 
the sum of all measurements of emotion 𝑖, 𝑥௜∙ = ∑ 𝑥௜௝௞௝ୀଵ . 𝑥̅௜∙ is 
the average of all measurements of emotion 𝑖 , 𝑥̅௜∙ = (1/𝑘) ∑ 𝑥௜௝௞௝ୀଵ . 𝑥∙∙ is the sum of all measurements over all emotions, 𝑥∙∙ = ∑ ∑ 𝑥௜௝௞௝ୀଵ௡௜ୀଵ . 𝑥̅∙∙ is the average of all measurements over all 
emotions, 𝑥̅∙∙ = (1/𝑛𝑘) ∑ ∑ 𝑥௜௝௞௝ୀଵ௡௜ୀଵ . 

We can obtain the stability score of each feature by 
computing the ICC, thereafter, we rank the features according to 
the stability scores in descending order. Features with higher 
ICC are more stable over the course of time, and exhibit better 
discriminability among different emotions. Our proposed feature 
selection method consists in iteratively selecting the top stable 
features and validating the inter-session emotion recognition 
accuracy. The feature subset that yields the best accuracy is 
retained. 

5 Experiments 
Based on our dataset, we carry out three simulations of aBCI. 

In the first simulation, we evaluate the recognition performance 
of aBCI when it can be re-calibrated from time to time. In the 
second simulation, we evaluate the long-term recognition 
performance of aBCI, especially when it operates without re-
calibration during the course of usage. In the third simulation, 
we evaluate our proposed stable feature selection method. 

5.1 Simulation 1: With Re-calibration 
In this experiment, we simulate the recognition performance 

of an aBCI where re-calibration of the system can be carried out 
each time before the subject uses the system. Specifically, we 
evaluate the within-session cross-validation recognition 
accuracy using the state-of-the-art affective EEG features 
referenced in Table 6. 

We base the simulation on the EEG data we collected in 
Section 3. Each EEG trial lasts for 76 seconds. We discard both 
ends of the EEG trial and retain the middle part of the EEG trial 
for the subsequent processing, based on the assumption that 
emotions are better elicited in the middle of the trial. The 
division of the EEG trial is illustrated in Fig. 3. EEG features are 
extracted out of the valid segments of the EEG trials on a sliding-
window basis. The final feature vector is a concatenation of the 
feature vectors from channel AF3, F7, FC5, T7, and F4, which 
were justified in [33] to be the top five discriminative channels 
concerning emotion recognition. The width of the window is 4 

Table 5 The analysis of variance table 

Treatment (emotion) Measurement Total Average 1  𝑥ଵଵ  𝑥ଵଶ  ⋯ 𝑥ଵ௞ 𝑥ଵ∙ 𝑥̅ଵ∙  2  𝑥ଶଵ  𝑥ଶଶ  ⋯ 𝑥ଶ௞ 𝑥ଶ∙ 𝑥̅ଶ∙  ⋮  ⋮  ⋮  ⋱ ⋮ ⋮ ⋮  𝑛  𝑥௡ଵ  𝑥௡ଶ  ⋯ 𝑥௡௞ 𝑥௡∙ 𝑥̅௡∙  
   𝑥∙∙ 𝑥̅∙∙  
Source of variance Sum of squares Degree of freedom Mean square 
Between treatment 𝑆𝑆஻ = 𝑘 ∑ (𝑥̅௜∙ − 𝑥̅∙∙)ଶ௡௜ୀଵ   𝑛 − 1 𝑀𝑆஻ = 𝑆𝑆஻/(𝑛 − 1) 
Within treatment 𝑆𝑆ௐ = 𝑆𝑆் − 𝑆𝑆஻  𝑛𝑘 − 𝑛 𝑀𝑆ௐ = 𝑆𝑆ௐ/(𝑛𝑘 − 𝑛)  
Total 𝑆𝑆் = ∑ ∑ ൫𝑥௜௝ − 𝑥̅∙∙൯ଶ௞௝ୀଵ௡௜ୀଵ   𝑛𝑘 − 1   

 

 
Fig. 3 Division of the EEG trial. EEG data at both ends are discarded. The 
middle part is retained and divided into two valid segments of the same 
length. Only valid segments are used for the subsequent processing. 

Table 6 Referenced state-of-the-art affective EEG features 

Feature (dimension, abbreviation) Reference 
6 statistics (30, STAT) [12, 13, 34, 49, 50]
36 higher order crossings (180, HOC) [34, 36-38]
Fractal dimension + 6 statistics + 36 higher order 
crossings (215, FD1)

[13, 34] 

Fractal dimension + 6 statistics (35, FD2) [13, 34]
3 Hjorth (15, HJORTH) [40, 41]
Signal energy (5, SE) [39]
Spectral power of 𝛿, 𝜃, 𝛼, and 𝛽 bands (20, POW) [4, 7, 12, 51] 
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seconds, and the step size is 1 second, as were used in [33]. Thus, 
each valid segment yields 7 samples. 

In this within-session cross-validation evaluation, the 
training data and test data are from the EEG trials within the 
same session. As the time gap between the acquisition of training 
and test data is minimal, the evaluation can approximate the 
performance of aBCI where calibration is carried out shortly 
before use. We use one valid segment as the training data and 
the other as the test data, and repeat the process until each 
segment has served as the test data for once. The per-session 
recognition accuracy is averaged across all possible runs. In this 
case, the evaluation is repeated twice per session, which is 
referred to as two-fold cross-validation. As we recognize four 
emotions in each session, the training data comprise 7×4 = 28 
samples for four emotions, totally. Likewise, the test data consist 
of 28 samples for four emotions. We adopt the Logistic 
Regression (LR) [46] classifier. The simulation is implemented 
on MATLAB R2017a, where we use the MATLAB built-in 
toolbox for the LR classifier with the default hyperparameters. 
The evaluation is carried out for each subject on a session-by-
session basis. The mean classification accuracy over 16 sessions 
and the standard deviations are displayed in Table 7. 

5.2 Simulation 2: Without Re-calibration 
In this experiment, we simulate the recognition performance 

where no re-calibration is allowed during the long-term use of 
aBCI. We evaluate the inter-session leave-one-session-out 
cross-validation accuracy for this purpose. Recall that in our 
dataset, we have 16 recording sessions per subject throughout 
the course of eight days. In this evaluation, we reserve one 
session as the calibration session whose EEG data are used to 

train the classifier, and pool together the data from the remaining 
15 sessions as test data. We repeat the evaluation until each 
session has served as calibration session for once. In this case, 
the process will be repeated 16 times per subject, and the 
reported recognition accuracy is the mean accuracy of 16 runs. 
This evaluation is to simulate the system performance in the long 
run, since there is a longer time gap between the training session 
and testing sessions—up to eight days. We adopt the features 
referenced in Table 6 in this simulation, in the same sliding-
window manner as in Section 5.1. We use only the valid segment 
1 (see Fig. 3) of each EEG trial and reserve the valid segment 2 
for the testing purpose in Simulation 3 introduced in the 
following section. The sliding-window feature extraction yields 
7 samples per valid segment. The training data consist of 7×4 = 
28 samples for four emotions recorded in the same session. The 
test data comprise 7×4×15 = 420 samples pooled together from 
the remaining 15 sessions. The mean classification accuracy 
over 16 runs and the standard deviations are displayed in Table 
8. 

5.3 Simulation 3: Stable Feature Selection 
In this experiment, we validate the effect of our proposed 

stable feature selection method based on the simulation of 
emotion recognition where no re-calibration is allowed during 
the long-term use of aBCI. This simulation is similar to 
Simulation 2, with the focus on the comparison between the 
state-of-the-art feature set and the stable feature set we propose. 

We propose to find the stable features on a subject-dependent 
basis. The subject-dependent evaluation intends to find subject-
specific stable features for each subject. We quantify the long-
term feature stability by computing the ICC scores on the 

Table 7 Four-emotion recognition accuracy of Simulation 1, mean accuracy (%) ± standard deviation (%) 

Feature Subject 
1 2 3 4 5 6 

STAT 56.81 ± 10.52 44.75 ± 16.66 43.64 ± 13.89 71.43 ± 14.32 47.92 ± 15.44 73.88 ± 15.29
HOC 32.25 ± 10.50 30.25 ± 10.05 28.46 ± 10.24 43.53 ± 12.20 28.37 ± 10.95 36.61 ± 12.29
FD1 43.08 ± 13.98 37.39 ± 12.58 33.59 ± 8.12 58.59 ± 13.40 39.58 ± 12.05 54.58 ± 11.03
FD2 57.14 ± 9.93 46.88 ± 17.25 45.76 ± 13.01 72.54 ± 14.49 48.91 ± 15.42 76.23 ± 15.51
HJORTH 53.24 ± 11.81 46.65 ± 14.30 41.41 ± 14.39 72.77 ± 17.82 47.92 ± 15.67 72.54 ± 18.78
SE 45.54 ± 15.95 40.63 ± 12.67 41.96 ± 17.57 59.49 ± 16.23 41.96 ± 18.90 62.83 ± 20.02
POW 48.66 ± 12.21 46.88 ± 17.72 36.05 ± 14.70 69.20 ± 15.83 42.26 ± 18.03 62.72 ± 16.00
Upp Chan Lvl 42.79 42.80 42.79 39.36 42.70 42.79

Table 8 Four-emotion recognition accuracy of Simulation 2, mean accuracy (%) ± standard deviation (%) 

Feature Subject 
1 2 3 4 5 6 

STAT 37.95 ± 5.01 24.79 ± 1.77 25.61 ± 1.65 39.49 ± 6.95 27.00 ± 3.98 30.39 ± 6.24
HOC 26.55 ± 4.27 24.78 ± 2.72 25.51 ± 2.63 28.68 ± 4.01 25.68 ± 2.78 27.01 ± 3.05
FD1 28.93 ± 3.98 24.52 ± 2.27 25.13 ± 2.83 33.68 ± 5.58 25.82 ± 3.01 28.45 ± 3.67
FD2 37.38 ± 6.05 25.25 ± 2.68 25.16 ± 2.62 39.70 ± 7.10 27.52 ± 3.88 29.61 ± 6.25
HJORTH 31.77 ± 6.05 25.85 ± 3.33 27.05 ± 3.84 35.19 ± 8.13 26.32 ± 3.96 28.18 ± 4.82
SE 28.07 ± 2.83 25.80 ± 3.04 26.99 ± 2.79 38.35 ± 5.97 27.96 ± 4.37 28.53 ± 3.84
POW 30.49 ± 4.30 28.41 ± 4.25 28.01 ± 3.55 39.42 ± 6.44 27.63 ± 4.53 31.49 ± 6.94
Upp Chan Lvl 29.33 29.09 28.83 28.30 27.75 28.85

Table 9 Four-emotion recognition accuracy of Simulation 3 using the top n stable features. Mean accuracy (%) ± standard deviation (%) (# of stable 
features) 

Feature Subject 
1 2 3 4 5 6 

Our Selected Stable Feature 41.55 ± 4.31 (2) 30.24 ± 5.14 (7) 33.87 ± 3.55 (5) 45.22 ± 4.57 (1) 30.68 ± 3.43 (42) 33.63 ± 7.99 (34)
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training set consisting of the valid segment 1 (see Fig. 3) from 
all available trials, rank the features according to the stability 
scores, and retain the optimal subset of features pertinent to the 
subject that maximizes the recognition accuracy when iteratively 
evaluating the inter-session leave-one-session-out cross-
validation accuracy using the top 𝑛 stable features. The results 
are shown in Table 9 and Fig. 4. After we find the stable features, 
we evaluate the performance of the stable features on the test set 
comprising the valid segment 2 (see Fig. 3) from all available 
trials. The recognition performance on the test set is shown in 
Table 10. 

6 Results and Discussions 

6.1 Simulation 1: With Re-calibration 
Table 7 shows the mean accuracy ± standard deviation per 

subject based on two-fold cross-validation evaluation, which 
simulates the use case where re-calibration is allowed each time 
before a subject uses aBCI. The recognition accuracies vary 
between subjects and features, ranging from 28.37 % (Subject 5, 
HOC) to 76.23 % (Subject 6, FD2). HOC is found to be inferior 
to other referenced features on all subjects. The best performing 
feature varies between subjects. For subject 1, 2, 3, 5, and 6, 
referenced feature set FD2 yields better recognition accuracy 
than other referenced features. For subject 2, FD2, POW and 
HJORTH features give similar performance, outperforming 
other referenced features. For subject 4, STAT, FD2 and 
HJORTH features yield comparable results, being better than 
other referenced features. In general, FD2 performs well on all 
subjects in this simulation, which may suggest that FD2 is good 
for the use case where re-calibration is allowed from time to 
time. 

For a four-class classification task, the theoretical chance 
level of random guess is 25.00 %. However, it is known that the 
real chance level is dependent on the classifier as well as the 
number of test samples. For an infinite number of test samples, 
the real chance level approaches the theoretical value. For a 
finite number of test samples, the real chance level is computed 
based on repeated simulations of classifying samples with 
randomized class labels, as is suggested in [47, 48]. We carry 
out such simulation and present also in Table 7 the upper bound 
of the 95 % confidence interval of the chance level for the best 
performing feature (in bold) for each subject. Results show that 
the best-performing features yield recognition accuracy higher 
than the upper bound of the chance level. We conclude that the 
best-performing features perform significantly better than the 
chance level at a 5 % significance level. 

6.2 Simulation 2: Without Re-calibration 
Table 8 shows the mean accuracy ± standard deviation per 

subject based on inter-session leave-one-session-out cross-
validation evaluation, which simulates the long-term recognition 
performance of aBCI when no re-calibration is permitted during 
use. Notable accuracy drop can be observed, compared to when 
re-calibration is allowed at each new session. This experiment 
establishes that intra-subject variance of affective feature 
parameters does exist and does have a negative impact on the 
recognition performance, though the severity varies from subject 
to subject. For subject 2 and 3, the recognition performance is 
severely affected by the variance—the best recognition 
performance has dropped and fallen within the 95 % confidence 
interval of the chance level. We therefore conclude that subject 
2 and 3 are performing at random guess level. For subject 1, 4 
and 6, the best performance remains significantly better than the 

 

Subject 1 Subject 2 Subject 3 

 
Subject 4 Subject 5 Subject 6 

 
Fig. 4 ICC score of each feature and the inter-session leave-one-session-out cross-validation accuracy using the top n stable features, 1 ≤ n ≤ 255. The features 
are ranked by the ICC scores in descending order. 
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chance level at a 5 % significance level, which seems to suffer 
from the variance problem to a lesser extent. Subject 5 gives 
mediocre performance. 

6.3 Simulation 3: Stable Feature Selection 
To improve the long-term recognition accuracy, we propose 

to use stable features to mitigate the intra-subject variance of the 
affective feature parameters. Ideally, a stable feature should give 
consistent measurements of the same affective state over the 
course of time, therefore there is the possibility to mitigate the 
variance among repeated sessions on different days. We propose 
a feature selection method that consists in quantifying the long-
term stability of features with the ICC model, ranking the 
features according to stability scores and iteratively selecting the 
topmost stable feature for inclusion into the stable feature subset. 
We propose to find subject-dependent stable features. 

Fig. 4 presents the results of subject-dependent stable feature 
selection. The bar plot in Fig. 4 indicates the stability score given 
in ICC values. The higher the stability score, the less variance 
the feature exhibits. The stability scores are ranked in 
descending order. Table 11 shows the ranking of top 10 stable 
features and their respective ICC scores. As we can see, the 
feature stability varies from subject to subject. For subject 1 and 
4, the stability scores of the topmost stable features are notably 
higher than those of the other subjects. Generally, we observe 
that only a fraction of the features carry positive stability scores. 
For those with negative stability scores, it suggests that the 
variance of the feature parameters over time is even larger than 
the variance of the feature parameters between different 
emotions. Intuitively, these unstable features contribute to the 
deterioration of long-term recognition performance. 

The curves superimposed on the bar plots indicate the inter-
session leave-one-session-out cross-validation accuracy for 
classifying four emotions using only the first 𝑛 stable features, 
with 𝑛 varying from 1 to 255. As we can see, the curves exhibit 
similar trend among all subjects. The accuracy peaks at a small 
subset of stable features, then deteriorates when more and more 
unstable features are included into the feature subset being 
examined as 𝑛 increases. For subject 2, 3, 4, 5, and 6, we can see 
that the accuracy quickly deteriorates as features that carry 
negative stability scores are included into the feature subset 
being examined. This experiment shows the advantage of stable 
features over unstable features when the long-term performance 
is the utmost concern, and establishes the effectiveness of our 
proposed feature selection method. The peak recognition 
accuracy (peak of the accuracy curves in Fig. 4) and the number 
of stable features needed to achieve the peak performance are 
given in Table 9. Comparing Table 9 with Table 8, we can see 
that stable features selected by our algorithm have outperformed 
all referenced features. Comparing our features to the best-
performing referenced features in Table 8 (bold values), our 
features improve the accuracy by 3.60 %, 1.83 %, 5.86 %, 
5.52 %, 2.72 %, and 2.14 %, for subject 1, 2, 3, 4, 5, and 6, 
respectively. Moreover, our selected features have a smaller 
dimension than the referenced state-of-the-art features, 
mitigating the burden of classifier training. 

In addition, we observe that ICC value is in direct correlation 
with the long-term recognition performance, which validates our 

hypothesis that using stable features improves the accuracy. As 
can be seen from Fig. 4 (and also Table 11), the stability scores 
of the top stable features for subject 1 and subject 4 are notably 
higher than those for the other subjects. The long-term 
recognition performance of the selected stable features for 
subject 1 and subject 4 is also notably higher than that for the 
other subjects. Generally, the higher the stability score, the better 
the recognition accuracy. 

Looking at the subject-dependent feature ranking in Table 
11, we can see that the feature ranking exhibits a similar pattern 
among subject 1, 4, and 6. Statistic features top the stability 
ranking, together with Hjorth features and some HOCs. 
However, for subject 2, 3 and 5, different ranking patterns are 
observed. HOCs are found to be more stable, mixed with some 
power features and Hjorth features. Interestingly, HOC features 
have been frequently selected given their relatively high stability 
scores, despite their mediocre performance as was shown in 
Simulation 1 in Table 7. It may suggest that HOC features 
exhibit good stability and are suitable for the use case where the 
long-term recognition performance shall be put into 
consideration. However, they might not be the optimal features 
if re-calibration is allowed from time to time. 

6.4 Comparison on the Test Data 
We further examine the performance of the stable features 

on unseen test data comprising Segment 2 (see Fig. 3) of all 
available trials. To simulate the long-term recognition 
performance, the same inter-session leave-one-session-out 
cross-validation evaluation scheme is applied. The stable feature 
set remains the same as was found on the training data. The 
recognition accuracy using our proposed stable features as well 
as the referenced state-of-the-art features is presented in Table 
10. The results are principally consistent with the findings based 
on the training data. Our stable features outperform the best-
performing referenced features by 2.54 %, 0.23 %, 3.12 %, 
1.92 %, and 1.62 %, for subject 1, 3, 4, 5, and 6, respectively. 

6.5 Limitation 
In this paper, we have proposed and validated a stable feature 

selection method for EEG-based emotion recognition on a 
dataset comprising six subjects. Further studies are needed to 
conclude the performance on a larger dataset. We have taken a 
subject-dependent approach to find the subject-specific stable 
features. Compared to our previous studies [15, 16] where we 
had taken a subject-independent approach, subject-specific 
stable features are found to be more effective. However, the 
effective stable feature set is subject-dependent, to find which 
requires ample labeled affective EEG data recorded over a long 
course of time. The acquisition of such data may post a burden 
on the subjects. Although the stable features perform relatively 
better than the referenced state-of-the-art in the long run, the 
absolute recognition accuracy is still admittedly low. It remains 
an open question as to how we can effectively mitigate or even 
eliminate the need for frequent re-calibrations for aBCI. 
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7 Conclusion 
An aBCI is an affective interface between the user and the 

computer that relies on spontaneous EEG signals to function. In 
many existing aBCI studies, machine learning techniques are 
leveraged to recognize the affective states, which consist in 
acquiring the affective EEG signals from the user and calibrating 
the classifier to the affective pattern of the user. However, 
affective neural patterns are volatile over time even for the same 
subject, and intra-subject variance exists in the affective feature 
parameters. Due to these challenges, the recognition accuracy 
cannot be maintained if the usage of aBCI prolongs without 
recalibration. We propose a stable feature selection method to 
select the optimal feature set that maximizes the recognition 
accuracy for the long run for aBCI. The proposed method 
consists in modeling the feature stability by ICC, feature ranking 
and iterative selection of stable features. We hypothesize that 
unstable features contribute to the accuracy deterioration when 
the aBCI operates without re-calibration over the course of time, 
and by using stable features, the recognition accuracy can be 
improved. We carry out extensive comparisons between our 
stable features and the state-of-the-art features. In Simulation 1, 
we show the recognition accuracy of an aBCI using the state-of-
the-art features, where the aBCI is allowed to be re-calibrated 
from time to time. In Simulation 2, we simulate the long-term 
usage of an aBCI and establish that accuracy deterioration will 
occur when the aBCI operates without re-calibration. In 
Simulation 3, we analyze the performance of stable features 
selected by our proposed method. We demonstrate the accuracy 
trajectory when we iteratively include features into the selected 
feature subset. Experimental results show that recognition 
accuracy peaks at a small subset of stable features, and as more 
unstable features are included, the recognition accuracy quickly 
deteriorates. The experiment results validate our hypothesis. 
Comparisons between our stable features and the referenced 

state-of-the-art features show that our stable features yield better 
accuracy than the best-performing referenced features by 1.83 % 
– 5.85 % on the training set, and by 0.23 % – 2.54 % on the test 
set. 

We stress that existing studies have overlooked the 
performance evaluation of aBCI during long-term use, which 
may partly be due to the fact that few existing datasets contain 
long-term affective EEG recordings. In this paper, we present 
the SAFE dataset which includes multiple recording sessions 
spanning across several days for each subject. Multiple sessions 
across different days were recorded so that the long-term 
recognition performance of aBCI can be evaluated. We stress 
that it is equally important to inspect the long-term recognition 
performance of aBCI. We invite other researchers to test the 
performance of their aBCI algorithms on this dataset, and 
especially to evaluate the long-term performance of their 
methods. 
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