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Abstract: Most of existing eye movement-based fatigue detectors utilize statistical analysis of fixations, 

saccades and blinks as inputs. These parameters require long recording time and depend heavily on eye 

trackers. As a result, they cannot timely and effectively discriminate fatigue. In an effort to facilitate 

proactive detection of mental fatigue, we introduced a novel fatigue indicator, named gaze-bin analysis.  

Instead of identifying events from eye tracking data, the novel fatigue indicator simply presents the eye 

tracking data with histograms. We developed an innovative method which engaged gaze-bin analysis as 

inputs of Semi-supervised Bagged trees. The approach could alleviate the burden of manual label, eliminate 

the problem of overlapped data, as well as improve the performance of fatigue detection model. It was 

demonstrated by a case study in a vessel traffic service center. The results showed that the approach could 

achieve an excellent accuracy of 89% which outperformed other methods. In general, this work paved an 

alternative way to detect mental fatigue as well as enabled the application of a low sampling rate eye tracker 

in traffic control center.  
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1. Introduction 

Traffic Control (TC) refers to surveil, control and manage traffic via monitoring real-time traffic data 

and providing instructions or advice to traffic operators [1-3]. It aims at improving traffic flow as well as 

promoting fluent and safe traffic. Currently, it has been implemented in almost all transport modes such as 

air traffic management, freeway traffic management, vessel traffic service and railway traffic control. Its 

main operations include 24-hour passive monitoring [4-6]. The passive monitroing could easily induce high 

possibility of mental fatigue [7, 8], leading to disastrous consequences in public safety [9, 10]. Recently, 

mental fatigue is regarded among the top 10 safety issue, causing around 20% of accidents in all modes of 

transport [7].  

Potentially, the risk of mental fatigue can be reduced by proactively monitoring fatigued Traffic Control 

Operators (TCOs) using eye movements. Eye movements have long been found to be applicable indicators 

of mental fatigue. Moreover, with technology improvement, eye movements currently could be remotely 

tracked by contactless eye trackers [11, 12]. Hence, eye movements can be measured continually during 

extended cognitive tasks. Changes in eye movements can be promptly captured to understand the 

interactions of human interface. Hence, eye movement-based fatigue detectors have lately received great 

attention [13-16]. Researchers have tried to use eye-tracking data to detect real-time human fatigue in 

watching video, driving, surgical operating and airline operating [16-19]. 

Existing methods in eye movement-based mental fatigue detection focused on using long-time recorded 

eye movements to generate descriptive fatigue indicators, such as mean, standard deviation and median of 

fixations and saccades [18]. These indicators impeded warning fatigued subjects timely. Moreover, these 

indicators depend heavily on the selection of parsing methods and the quality of eye-tracking data [21]. As 

a result, there are many contradictions results in studies of eye movement-based mental fatigue detection. 

For example, though many studies indicated that saccadic parameters vary with fatigue level [27, 33, 34], 

Saito [35] did not find any significant quantitative changes in saccadic eye movement in five hours of eye-

tracking tasks. 

Hence, instead of focusing on fixations and saccades, we proposed to capture dynamic information from 

short-period eye-tracking data using bin analysis. Bin analysis refers to counting how many values fall into 

a specified interval. It could accurately present the distribution of numerical data and capture dynamic 

features from short-period data [25]. By extending bin analysis to eye-tracking data, we introduced a novel 

problem for fatigue study namely using gaze-bin analysis of short-period data to develop fatigue detection 

model.  
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There are several challenges in addressing this problem. First, by splitting long recorded eye-tracking 

data into short-period data, we would introduce overlapped data. The overlapped data could induce fake 

performance of fatigue detection model. Second, excessive efforts required for labeling short-period eye-

tracking data. Emerging studies in eye movement-based fatigue detection adopts manually labeling eye 

tracking data with subjective fatigue scales. However, in this work, the numerous short-period data require 

excessive efforts in manually labeling them with fatigue levels. Third, the performance of eye movement-

based human fatigue detection impaired by the existence of classification noise, which is caused by the 

fairly large variance in eye movements [16]. The commonly used method is support vector machine. 

Nevertheless, its performance in eye movement-based human fatigue detection is still far from satisfactory. 

As a result, the existing eye-tracking fatigue detectors could produce a great amount of false alarms [23], 

inducing “wolf” effects. Forth, how to determine the period of time-window? In existing studies, the time 

window used for eye-movement-based human fatigue detection ranges from 8 seconds to 30 minutes. It is 

believed that the period of time window would have great effects on the performance of human fatigue 

models, such as detection accuracy and delayed time [22]. However, the appropriate time window received 

limited investigation. 

In order to deal with these challenges and achieve the aim of proactively and non-invasively monitoring 

mental fatigue of TCOs, we proposed a method by extending Bagged trees with semi-supervised training 

to gaze-bin analysis. Bagged trees adopts the concept of assembling multiple decision trees. It could 

perform well in analyzing data with substantial classification noise [24]. Semi-supervised training enable 

us to use both labeled and unlabeled training data. We conducted a case study in a vessel traffic service 

center to illustrate the proposed method. The results showed that our method dominated other methods, and 

achieved an accuracy of 89% using 10-second eye movement data.  

The paper is organized as follows. In section 2, as the limited studies in TC, the existing eye movement-

based detectors of human fatigue in other fields were reviewed to figure out the methods and parameters 

that are commonly used. In addition, the development of Bagged trees and bin analysis are described.  In 

Section 3, the novel problem of using gaze-bin analysis to discriminate human fatigue is stated. Section 4 

describes the innovate approach for detecting human fatigue using gaze-bin analysis. The case study in 

vessel traffic service and the performance of the proposed approach are presented in Section 5. In addition, 

Section 5 presents the effects of model characterizes as well as the comparison results of the proposed 

method with other classic methods. Section 6 summarizes the contributions and limitations of this work.  
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2. Related Works 

This section provides a review on eye movement-based human fatigue detection from two aspects: eye 

movement-based indicators and detection algorithms. In addition, the development and applications of 

Bagged Trees and bin analysis are examined to provide theoretic background for following sections.  

2.1 Eye Movement-based Human Fatigue Detection 

As early as 1996 [26], researchers had found that eye movement parameters could be potential indicators 

of human fatigue. In general, eye movement parameters including blinks, Percent Eye Closure (PERCLOS), 

saccades and fixations. Blinks related parameters are the most commonly utilized indicators [19, 20, 27]. 

In fatigued state, operators usually shows high rate of blink. Du et al. [28] indicated the possibility of using 

blink rate variance to discriminate human fatigue. Jin et al. [29], Azim et al. [30], and Ahlstrom et al. [20] 

investigated into detecting fatigue using blink frequency. Besides blinks, Percent Eye Closure (PERCLOS) 

has been widely used to detect human fatigue, too [29-31]. PERCLOS commonly increases with the 

increase of human fatigue. Hartley et al. [23] indicated that PERCLOS is among the best ocular measures 

for assessing fatigue. However, both blink related parameters and PERCLOS are of limited value [32]. The 

high rate of blink and large PERCLOS leads to visual information loss and the high possibility of human 

errors. Hence, using them to detect human fatigue would be too late to reduce the risk of human fatigue. 

Other commonly used parameters are saccadic parameters [27, 33, 34]. Finke et al. [33] indicated that 

saccadic parameters such as saccade amplitude, saccade rate and saccade duration, especially saccade peak 

velocity were reliable indicators of human fatigue. Di Stasi et al. found that the saccade peak velocity seems 

to greatly decrease with the increase of human fatigue [32]. All the parameters mentioned above depend 

heavily on the paring methods and the eye tracker [21]. For example, only the eye tracker with high 

sampling frequency could record saccade peak velocity. These drawbacks made it challenging to realize 

eye movement-based human fatigue detection using fixations and saccades parameters. 

Currently, emerging studies found that it is possible to connect eye movement data to human fatigue by 

using machine learning techniques [19, 29, 30, 36, 37]. Yamada and Kobayashi [19] adopted support vector 

machine to detect mental fatigue. They recorded eye movements of participants who were watching video. 

Then they engaged gaze allocations as inputs of support vector machine to measure fatigue. Zhu et al. [36] 

applied convolutional neural networks in fatigue detection using blinks, slow eye movement and rapid eye 

movement. In general, the most commonly used technique is support vector machine, which was first 

proposed in 1995 [38]. It has shown good performance in detecting and recognition of text, speech and 

even credits [39, 40] and has been found to be a suitable method for measuring the cognitive states of 

humans. Nevertheless, the performance of support vector machine in eye movement-based human fatigue 

detection is still far from satisfactory (around 70%) [19]. We believed that the result may be caused by 
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overlook of eye movement dynamic information and large classification noise. Hence, we proposed to 

address these problems by using the following theories. 

2.2 Bin analysis 

Data binning refers to segmenting data into several intervals and replacing values within one interval 

with a representative value [41]. The interval is called as “bin”. This is a data pre-processing technique used 

to reduce the number of values to analyze [42]. It has been widely used in many fields such as visual 

diagnosis, genome architecture and metabolomics data analysis [41-43]. In general, the representative 

values of a give interval is the central value. In this study, we proposed to use the probability of the values 

fallen with a given interval as the presentative value. In this way, a histogram can be established. It could 

accurately represent the distribution of continuous data [25] with P=(𝑝1, 𝑝2, … , 𝑝𝑁). 𝑛 refers to the number 

of the given interval. 𝑝𝑛 refers to the probability of the values fallen within the nth interval. Entropy which 

indicates the state of the system can be calculated following the definition of Shannon et al. [44]. 

2.3 The bagged trees 

Bagged predictor was first proposed in 1996 [24]. It is a method for manipulating training data to 

generate multiple predictors and aggregating results of multiple predictors. It has been successfully applied 

to construction material classification and diesel-electric locomotive train [45, 46]. Bagged trees approach 

attempts to assemble multiple trees so as to improve the model performance [24]. Assuming that the training 

data has N instances and each of these instances is labeled with one of K classes. A learning system, such 

as the decision-tree algorithm, C4.5, can be used to construct a predictor by taking a bootstrap sample from 

the training data. The size of the bootstrap sample is same with the size of the training data (N), but some 

instances are duplicated and some are removed. Multiple predictors can be constructed by generating 

repeatedly and training the bootstrap sample from the original training data. In general, the number of 

repetitions (T) can be fixed or be determined by cross-validation [47]. To classify an instance, x, all 

predictors constructed in T trails would indicate the class of the instance x. The instance x will be classified 

as Class k which has most votes from these predictors [48].  

This concept of assembling multiple trees is not new and both the boosted trees and random forest make 

predictions based on multiple trees [49]. Comparing with the boosted trees and random forest, the bagged 

trees approach can perform much better in analyzing data with substantial classification noise [49]. Breiman 

[24] indicated that ‘If perturbing the learning set can cause significant changes in the predictor constructed, 

then bagging can improve accuracy’. This advantage makes it very suitable for eye movement-based human 

fatigue detection [19].  
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3. Gaze-bin Analysis-based Indicators of Human Fatigue 

In this section, we first introduce the definition of gaze-bin analysis. Based on this definition, we give a 

description of the research problem waiting to be addressed in this work.  

3.1 Gaze-bin Analysis 

Given a series of eye tracking data, extracting parameters aims to identifying indicator of human fatigue. 

As a fundamental problem of eye movement-based human fatigue detection, eye parameters have been 

investigated in many studies [15, 16, 18]. Figure 1(a) shows the basic idea of these existing parameters. 

Generally, previous studies focused on identify fixations and saccades first and then generate statistical 

parameters. Basically, they transform the eye tracking data ℜ = {𝐺, 𝑇}, 𝐺 = {𝑋, 𝑌} to ℜ = {𝐹, 𝑆}, where 𝐺 

refers to the x and y coordinates set of gaze points, T is the set of time stamp, F is the set of fixations, and 

S is the set of saccades. 

Different from existing studies, we investigate a novel research problem: gaze-bin analysis. We aim to 

capture the dynamic velocities of short-period eye-tracking data. The gaze velocity of each gaze point could 

be calculated by determining the difference between the central of two points and multiply by the sampling 

frequency (f) of the eye tracker .  

𝑣𝑡 = 𝑓 × √(𝑥𝑡 − 𝑥𝑡−1)
2 + (𝑦𝑡 − 𝑦𝑡−1)

22
 

𝑡 ∈ 𝑇, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 

(1) 

Hence, we presented the eye tracking data as ℜ = {𝑉, 𝑇},  V is the set of gaze velocity.  

We split the eye-tracking data into short-period data packets first and then conduct bin analysis. The 

time series data of eye movement were split into N packets based on time window and shift window. Time 

window (Tw) denotes the period of each packet. Shift window (Sw) refers to the length that time window 

moves forward. T refers to the length of the eye tracking data. 

𝑁 = ⌊
𝑇

𝑆𝑤
⌋ − ⌊

𝑇𝑤
𝑆𝑤
⌋ + 1 (2) 

𝑀 = 𝑇𝑤 × 𝑓 (3) 

In this way, the eye tracking data ℜ = {𝑉, 𝑇} are presented as ℜ = {𝐷1, 𝐷2, …𝐷𝑁}. M refers to the 

number of gaze points belonging to a data packets.  f is the sampling rate frequency of the eye tracker.   

The basic idea of gaze-bin analysis is shown in Figure 1 (b).  We present the eye-tracking data ℜ =

{𝐷1, 𝐷2, …𝐷𝑁} as ℜ = {𝑃} = {𝑝1, 𝑝2, … 𝑝𝑁}, where P is the set of gaze velocity probability vector. 
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Figure 1: Representation of eye tracking data 

We extended the bin analysis to gaze velocity analysis by describing each data packet as a histogram of 

all velocities the eye travel during the time window (Tw). For the gaze velocity data belonging to the data 

packet, it is transformed into a discrete probability mass function and entropy, p=(p(v1), p(v2),…, p(vB), e), 

where 𝑝 ∈ 𝑃, 𝑝(𝑣𝑏) >= 0   for all b, ∑ 𝑝(𝑣𝑏)𝑏 = 1. The probability and entropy can be calculated by Eq. 

(3) and (4), respectively.  

{

𝑝(𝑣𝑏) =
𝑛𝑓

𝑇𝑤 × 𝑓

𝑝(𝑣𝑏) =
𝑛𝑠

𝑇𝑤 × 𝑓
,    𝑓𝑜𝑟 𝑏 = 𝐵

, 𝑓𝑜𝑟 𝑏 = 1,2,… , 𝐵 − 1 (4) 

e = ∑𝑝(𝑣𝑏) × 𝑙𝑜𝑔(𝑝(𝑣𝑏))

𝐵

𝑏=1

 (5) 

where  

𝑛𝑓 refers to the number of gazes whose velocity meet the requirement : 𝐵 ×
𝑉

𝐵
≥ 𝑣 > (𝑏 − 1) ×

𝑉

𝐵
. 

𝑛𝑠 refers to the number of gazes whose velocity meet the requirement : v > V. 

V is the maximum velocity of the fixation;  

B is the number of bins; f refers to the sampling rate of the eye tracker;  

e is the entropy of the gaze velocities belonging to the time window.  

Since velocities of saccade are much faster than velocities of fixations, and the amount of time spent on 

saccades is substantially shorter than on fixation, just one bin (bin B) was set for saccades.  

3.2 Problem Statement 

Unlike the existing studies, we proposed a novel analysis of short-period eye-tracking data instead of 

statistical analysis of fixations and saccades, which can only be obtained from long-recorded eye-tracking 
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data. In this way, we introduced a new problem of using gaze-bin analysis to discriminate human fatigue 

in TCCs. The problem is stated as follows: given a set of eye-tracking data ℜ = {𝑝1, … , 𝑝𝑚}, a set of fatigue 

levels 𝐹𝐿 = {𝑓𝑙1, … , 𝑓𝑙𝑗}, we aim to: (1) train a fatigue model { ℜ, 𝐹𝐿} → 𝐹𝑀; as well as (2) predict human 

fatigue level using short-period eye tracking data 𝑓𝑙
𝐹𝑀
← {𝑝} . This problem is based on the following 

assumptions: 

Assumption 1: The dimension of FL is much smaller than the amount of data packets belonging to ℜ. In 

other words: 𝑗 ≪ 𝑚. 

Assumption 2: The eye-tracking data collected from the same participant are subject to the same 

distribution. 

Assumption 3: There are some overlaps among data packets, 𝑝𝑑 ∩ 𝑝𝑑+1 ≠ ∅,𝑤ℎ𝑒𝑟𝑒 {𝑝𝑑 , 𝑝𝑑+1} ∈ 𝑃 . 

Compare with existing human fatigue detection works that focused on fixations and saccades from long-

recorded eye-tracking data, our solution of using gaze-bin analysis is expected to capture dynamic features 

from short-period eye-tracking data. Moreover, the gaze-bin analysis is independent on event detection 

methods and eye trackers. Hence, it is expected to reduce the contradictory results caused by eye trackers 

and event detection methods. 

4. Semi-supervised Bagged Trees for Human Fatigue Detection 

We proceed to present an innovative method to address the challenges mentioned in Section 1 for gaze-

bin analysis-based human fatigue detection. In general, training data and test data were randomly selected. 

Nevertheless, simple selection is not applicable in this work due to the overlapped data packets. Hence, we 

introduced our proactively selection of training and testing data first. Then, we developed a semi-supervised 

bagged trees method to train fatigue model using labeled and unlabeled data. Last, we state the procedures 

of human fatigue detection.  

4.1 Proactively Selection of Training and Testing Data 

In total, N data packets are utilized for training and testing the bagged trees model. First, we randomly 

selected 80% of data packets for training and remains for testing. To avoid overfitting caused by the 

overlaps of data packets, the training data and testing data were split before training. The overlapped data 

packets were deleted, as shown in Figure 2. A random number s was generated by Matlab R2018a. To avoid 

s is out of index, s was set to be larger than 𝑁𝑃 and smaller than 0.8N-𝑁𝑃-1. The data packets numbered s 

to s+0.2N were utilized as testing data. The data packets whose number range from s-0.5𝑁𝑃 to s+0.2N 

+0.5𝑁𝑃 were deleted. After deleting the overlapped data, the remaining data were used to train the model. 
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𝑁𝑃 = 2 ∗ (⌊
𝑇𝑤
𝑆𝑤
⌋ − 1) (6) 

where, 𝑁𝑃 is the number of overlapped data packets.  

1
2

3

...
s-NP/2

s-1
s

s+0.2N

s+0.2N+Np/2

Test data (s to s+0.2N)

Delete Delete 

N...

Time line

Random starter

... ...
...

Figure 2: Generating data for training and testing 

In this way, we obtained training data set 𝑇𝑟 = {𝐷1,… ,𝐷𝑠−𝑁𝑝−1, 𝐷𝑠+0.2𝑁+𝑁𝑝+1,… ,𝐷𝑁}, and testing data 

set 𝑇𝑠 = {𝐷𝑠,… ,𝐷𝑠+0.2𝑁}. 

4.2 Semi-supervised Training with Decision Tree 

Given a set of eye-tracking data 𝑇𝑟 = {𝐷1,… , 𝐷𝑠−𝑁𝑝−1, 𝐷𝑠+0.2𝑁+𝑁𝑝+1,… ,𝐷𝑁}, a set of fatigue levels 𝐹𝐿, 

the amount of data packets in 𝑇𝑟 is much smaller than the dimension of 𝐹𝐿 . We present { 𝑇𝑟, 𝐹𝐿} as 

{ 𝐷𝑙, 𝐷𝑢}, where 𝐷𝑙 refers to the set of labeled eye-tracking data and 𝐷𝑢 refers to the set of unlabeled eye-

tracking data. Basically, { 𝐷𝑙, 𝐷𝑢} = {𝑑1
𝑙 , 𝑑2

𝑙 , … 𝑑𝑗
𝑙 , 𝑑𝑗+1

𝑢 , … , 𝑑𝑚
𝑢 } , 𝑑𝑙 = {𝑝, 𝑓𝑙}  and 𝑑𝑢 = {𝑝}.  Hence, we 

search for a labelling vector 𝐹𝐿∗ = (𝑓𝑙𝑗+1
∗ , … , 𝑓𝑙𝑚

∗ )𝑇for the unlabelled dataset.  

We first train a decision tree using the labeled data set 𝐷𝑙, then use the decision tree to generate a 

labelling vector 𝐹𝐿∗ = (𝑓𝑙𝑗+1
∗ , … , 𝑓𝑙𝑚

∗ )𝑇for the unlabelled dataset. A subset 𝑓𝑙𝑠𝑢𝑏
∗  with high classification 

confidence of the 𝐹𝐿∗ would be selected to label the 𝐷𝑠𝑢𝑏
𝑢 . Then we retrain decision tree using the data set 

{𝐷𝑙 , 𝐷𝑠𝑢𝑏
𝑢 } and reselect a subset data from the unlabelled dataset. The procedure is repeated until it reaches 

a stopping condition. We used the C4.5 algorithm to build decision trees. The C4.5 algorithm is the most 

well-known algorithm for building decision trees and has been successfully used in many fields [50]. This 

has motivated us to develop trees using the C4.5 algorithm. Algorithm 1 presents the main structure of 

semi-supervised training algorithm. The output training dataset can be represented as  𝑇𝑟 = {𝑑1
𝑙 , … , 𝑑𝑚

𝑙 } 

Algorithm 1: Semi-supervised training algorithm 

T: number of iterations.   C: prediction confidence threshold 

t=1 

while t<T 
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      Dt  Decision tree(𝐷𝑙) 

      𝐹𝐿∗= Bt (𝐷𝑢) 

      select 𝐷𝑠𝑢𝑏
𝑢  whose p( 𝐹𝐿𝑠𝑢𝑏

∗ )>C 

      𝐹𝐿  {𝐹𝐿+𝐹𝐿𝑠𝑢𝑏
∗ } 

      𝐷𝑙   {𝐷𝑙+𝐷𝑠𝑢𝑏
𝑢 } 

      𝐷𝑢  {𝐷𝑢-𝐷𝑠𝑢𝑏
𝑢 } 

      t=t+1 

end  

Output: generate final training dataset 𝐷𝑙  and a labelling vector 𝐹𝐿∗ 

4.3 Bagged trees-enabled Human Fatigue Detection 

In order to build A trees for bagging, we generated A copies of data set 𝐵𝑇 = {𝐵𝑇1, 𝐵𝑇2, …𝐵𝑇𝐴} from 

the training data set 𝑇𝑟 using Sampling with replacement. Based on each of the data set 𝐵𝑇𝑎, a decision tree 

𝐹∗𝑎 could be built using Classification And Regression Tree (CART) algorithm.  

Given the training data set 𝐵𝑇𝑎 = {(𝑝1
𝑎, 𝑓𝑙1

𝑎),… , (𝑝𝑚
𝑎 , 𝑓𝑙𝑚

𝑎 )} where 𝑝𝑎 ∈ 𝑃, 𝑓𝑙𝑎 ∈ 𝐹𝐿, the decision tree 𝐹∗𝑎 

divide 𝑃 into several feature subspace {ℛ1, … , ℛ𝐾}. On each subspace ℛ𝑘, the same prediction is made for 

all 𝑝𝑤 ∈ ℛ𝑘. The estimated probability of each class F on subspace ℛ𝑘 is: 

𝑃𝑟𝑜𝑘𝐹̂ =∑ Ι(𝑓𝑙
𝑖
𝑎 = 𝐹)

𝑖
∙ Ι(𝑝

𝑖
𝑎 ∈ ℛ𝑘) ∑ Ι(𝑝

𝑖
𝑎 ∈ ℛ𝑘

𝑖
)⁄  (7) 

We aims at finding 𝐹∗𝑎 which could achieve minimized Gini index: 

𝐺𝑖𝑛𝑖 =  ∑ 𝑃𝑟𝑜𝑘𝐹̂(1 − 𝑃𝑟𝑜𝑘𝐹̂)

1

𝐹=0

 (8) 

The final prediction for a give observation p is calculated using eq.(6) .  

𝐹̂𝑏𝑎𝑔(𝑝) = ⌊
1

2𝐴
∑ 𝐹̂∗𝑎
𝐴

𝑎=1

(𝑝)⌋ (9) 

In general, out-of-bag errors are usually used to evaluate the bagged model. Although the out-of-bag 

error estimation is particularly convenient, it is not suit for this study due to the overlaps of data packets. 

As illustrated in Figure 2, each data packet overlaps with several other data packets. In this way, it is too 

complex to identify out-of-bag observation. Hence, we extended k-fold cross-validation method in this 

study. We used the aforementioned testing data set 𝑇𝑠 = {𝐷𝑠,… ,𝐷𝑠+0.2𝑁}, where 𝐷𝑠 = (𝑃𝑠, 𝐹𝐿𝑠) to test the 

bagged model. For each fold l, we could obtained the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑙 based on Eq. (10).  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑙 = 1 −
1

0.2𝑁
∑ |(𝐹𝐿𝑟 − 𝐹̂𝑏𝑎𝑔(𝑃𝑟))|

𝑠+0.2𝑁

𝑟=𝑠

 (10) 

Beside accuracy, sensitivity and specificity were tested. Basically, accuracy measures the percentage of 

correctly classified observations. As for sensitivity, which is also known as the true positive rate, it 

determines the proportion of actual positives that are correctly identified as positives. On the other hand, 

specificity measures the proportion of actual negatives that are correctly identified as negative. In this study, 

‘alert’ is defined as positive and ‘fatigue’ is defined as negative.  

5. Case Study  

In the following, the data collection and the performance of the proposed method are described. The 

effects of the model characteristics including time window, bin number, and input features were 

investigated and presented. In addition, we compared our method with other commonly used methods such 

as decision tree, linear regression and support vector machine.  

5.1 Data collection and model construction of VTS operators 

Eight Vessel Traffic Service Operators (VTSOs) comprising seven males and one female with normal 

vision were recruited for this study. Their age ranges from 30-years old to 50-years old. All of them were 

working in the morning shift, which starts from 7:30 am to 15:30 pm. None of them suffered from sleep 

disorders.  

The data collection phase comprised four sessions (Figure 3). The participants were asked to conduct 

their daily work and to do 5-min Mackworth Clock Test after every two hours of work. The participants 

were instructed to complete the Samn-Perelli Fatigue Scale before and after the Mackworth Clock Test. 

Their eye movements were recorded using Tobii X3-120. 

Time line
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Consent forms

Demographical 
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Figure 3: The procedures of data collection 

In total, we collected eye movements data of 160 minutes (8 participants * 5 minutes * 4 sessions) from 

eight VTSOs. The human fatigue data were summarized from the results of the Samn-Perelli Fatigue Scale 

and the Mackworth Clock test. 

For generating data packets, we set the time window ranges from 4 seconds to 10 seconds. The shift 

window was set as a quarter of the time window. According to the Eq (6), the number of the overlapped 

data packets is 6. The amount of data packets N varies with the length of the time window, as shown in 

Table 1. Besides the time window, the value of bin number (b) requires more investigation, as it can affect 

the performance of human fatigue detection model. Specifically, if b is too large, it may induce data 

redundancy and low efficiency of computing. If b is too small, some dynamic information of the gaze data 

could not be captured by the bin analysis. In this study, we set b as 6, 8, 10, 12, 14 and 16. 

Table 1: The amount of data packets with different time window (for each participant) 

Time window (seconds) N Np N test 

4 1196 6 1199 

6 796 6 159 

8 596 6 119 

10 476 6 95 

5.2 Performance of the human fatigue detection models 

We established 192, i.e. 6 bin numbers x 4 time windows x 8 participants, bagged tree models and tested 

their performance from three aspects, namely accuracy, sensitivity and specificity. For each model, 10 

observations were obtained from 10-fold cross-validation. Multiple ANOVAs were conducted to test the 

differences in observation of all the models. 

Figure 4 shows the performance of human fatigue detection models across different time windows. We 

conducted multiple ANOVAs to test the differences in performance of the models with different time 

window. The results showed that the time window had a significant effect on the accuracy (F3, 168=16.062, 

p<0.001) and specificity (F3, 168=33.891, p<0.001) of the human fatigue detection model, but not on 

sensitivity (F3, 168=1.319, p=0.270). It can be deduced that the time window has no significant effects on 

detecting ‘alert’ state, while has significant effects on detecting ‘fatigue’ state. In other words, using longer 

periods to summarize the data made the fatigue state easier to be detected. With the increase of time window, 

the human fatigue detection model can detect ‘fatigue’ state with higher accuracy and more sensitivity. 

While the main effects of the bin number on the model performance is not significant (accuracy: F5, 

168=0.013, p=1.000; sensitivity: F5, 168=0.55, p=0.998; specificity: F5, 168=0.113, p=0.989). Hence, the 

performance of human fatigue detection model is not sensitive to the bin number.  Figure 5 shows the line 
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graph of the model performance across different bin number. The best performance (accuracy=0.90; 

sensitivity=0.81; specificity=0.90) was achieved when the time window was set to 10 seconds and the bin 

number was set as 8. 

Figure 6 shows the cloud graph of human fatigue detection accuracy with different bin number and time 

window. As shown in Figure 6, longer time window could achieve better performance. Nevertheless, larger 

in number showed no significant improvement. The interaction effect of bin number and time window 

appeared to be insignificant (accuracy: F15,168=0.03, p=1.000; sensitivity: F15,168=0.30, p=1.00;specificity: 

F15,168=0.091, p=1.000). In the followings sections, the bin number is fixed at 8. 

 
Figure 4: Model performance vs time window        Figure 5: Model performance vs bin number 

 
Figure 6: Effects of bin number and time window on detecting accuracy 

5.3 Comparison with other common fatigue indicators 

In this section, we compared the performance of four kinds of feature combinations, namely gaze bin 

analysis, fixations, saccades and combination data. Table 2 shows their parameters. Specifically, gaze bin 

analysis includes two kinds of parameters, namely velocity probability of each bin and entropy. For 

fixations and saccades, many statistical parameters could be generated from the raw eye movement data. 
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Hence, we selected several frequently used fixation parameters and saccade parameters based on literature 

review.  

Table 2: Feature combinations used as model input 
 Feature combination 

Eye movement parameters Gaze bin analysis (G) Fixation data (F) Saccade data (S) combination data (C) 

Mean fixation duration  ✓  ✓ 

Mean fixation velocity  ✓  ✓ 

Mean fixation stability  ✓  ✓ 

Fixation count  ✓  ✓ 

Saccade count   ✓ ✓ 

Mean saccade peak velocity   ✓ ✓ 

Mean saccade velocity   ✓ ✓ 

Mean saccade amplitude   ✓ ✓ 

Mean saccade duration   ✓ ✓ 

Gaze velocity probability ✓    

Entropy ✓    

To investigate the contribution of feature combinations on human fatigue detection, 128, i.e. 4 feature 

combinations x 4 time windows x 8 participants bagged tree models were built.  

For accuracy： 

Mauchly’s t 

Table 3 shows the performance of fatigue models with four kinds of feature combination. The results 

showed that it had a significant effect on the performance of human fatigue detection (accuracy: F3, 

112=2.283, p=0.083<0.05; sensitivity: F3, 196=1.489, p<0.05; specificity: F3, 196=7.772, p<0.001). The 

multiple comparisons showed that the gaze bin analysis could achieve a higher accuracy in human fatigue 

detection than other inputs. There is no significant difference in model performance among fixation data, 

saccade data and combination data (p=0.065). The results indicated that fixation data could contribute to 

human fatigue detection. What’s more, the results showed that the combination of fixation data with saccade 

data cannot greatly improve the accuracy of human fatigue detection. It could be explained in two aspects: 

first, the combination of fixation and saccade introduces too many input features and impairs the 

performance of the bagged tree. Second, there should be some relations between fixation and saccades. 

There was no interaction effect of time window and feature combinations (accuracy: F18, 196=0.092, 

p=1.000; sensitivity: F18, 196=0.124, p=1.000; specificity: accuracy: F18, 196=0.247, p=0.999). For all kinds 

of inputs, the model performance increased with time window. 

Table 3: Model performance (time window=4, 6, 8, 10 seconds, bin number=8) 

Performance Gaze bin analysis Fixation data Saccade data Combination data 
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Accuracy 0.84 0.77 0.79 0.81 

Sensitivity 0.77 0.71 0.67 0.75 

Specificity 0.85 0.75 0.78 0.79 

 
Figure 7: Effects of feature combination and time window on the performance of human fatigue 

detection 

5.4 Comparison with other methods  

In this section, the proposed approach was compared with other classic methods. The results gathered 

from 128, i.e.  4 time windows x 4 methods x 8 participants models were tested in the comparative study. 

Table 4 shows the accuracy of different methods using gaze bin analysis as inputs. The methods used to 

detect human fatigue had significant effects on accuracy and sensitivity (accuracy: F3, 112=7.771, p<0.001; 

sensitivity: F3, 112=3.52, p<0.05). Multiple comparisons show that Bagged trees outperformed other three 

methods in terms of accuracy and sensitivity. Nevertheless, there is no significant effect on the accuracy 

and sensitivity of the other three methods. No significant effects had been found on specificity (F3, 112=0.729, 

p=0.537). Therefore, Bagged trees cannot significantly improve the efficiency in detecting ‘fatigue’ state. 

Time window affected specificity (F3, 112=11.311, p<0.001), but not accuracy (F3, 112=0.735, p=0.533) and 

sensitivity (F3, 112=0.541, p=0.655). The model’s specificity increased with time window size, suggesting 

that using longer periods of eye movement data could improve the model’s ability in detecting fatigued 

state. The interaction effects of time window and methods are not significant, too (accuracy: F9, 112=0.125, 

p=0.999; sensitivity: F9, 112=0.26, p=0.982; specificity: F9, 112=0.311, p=0.970). Compared with the results 

of Section 4.2, we could conclude that the time effects on Bagged trees are more significant than on the 

other three methods. That’s why no main effect of time window was found in this Section. 

Table 4: Model performance (bin number=12, time window=4, 6, 8,10seconds) 

Performance Decision Tree Linear regression Support vector machine The Bagged trees 
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Accuracy 0.76 0.71 0.70 0.84 

Sensitivity 0.65 0.63 0.68 0.75 

Specificity 0.82 0.81 0.81 0.85 

   
Figure 8: Effects of methods and time window on the performance of human fatigue detection 

6. Conclusion 

The performance of TCOs is usually impaired by mental fatigue, resulting in great threats to public 

safety. To minimize its risks, we proposed an innovative approach to non-invasively detect human fatigue 

of TCOs using gaze-bin analysis. A case study was conducted to test the effectiveness and performance of 

the proposed approach.  

The contributions of this paper can be concluded as follows. First, we paved an innovative way to detect 

mental fatigue of TCOs. Instead of using brain dynamics, this work explored the possibility of using short-

period eye movement in this field. This work provides an alternative way to reduce the risk of mental fatigue 

in TCCs. Second, we proposed an innovative approach to timely detecting mental fatigue using short-period 

eye movement data. The utilization of short-period data unlocks the critical bottleneck of time delay in 

detecting human fatigue. Third, we did a pioneering work of using gaze-bin analysis as human fatigue 

indicators. The utilization of gaze-bin analysis enables the application of a low sampling rate eye tracker. 

Hence, it can significantly reduce the cost and improve the usability of eye movement-based human fatigue 

detector. Fourth, we extended the application of Bagged trees on human factors study. It outperformed the 

commonly used machine learning methods, such as decision tree and support vector machine. Last, we took 
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the lead of testing the effects of time window and bin number on model performance. The results provided 

a reference and guidance for future studies.  

One limitation of this study is that the proposed method cannot clearly detect medium fatigue from alert. 

The proposed method can only warn fatigued users. It cannot be used in the fields that required operators 

to be quite alert. What’s more, to guarantee the performance of human fatigue model, training data of each 

user is required. For future studies, a general model which can detect more levels of human fatigue would 

be developed.  
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