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Abstract: 

Vigilance decrement of traffic controllers would greatly threaten public safety. Hence, 

extensive studies have been conducted to establish the physiological data-based vigilance model 

for objectively monitoring or detecting vigilance decrement. Nevertheless, most of them using 

intrusive devices to collect physiological data and failed to consider context information. 

Consequently, these models can be used in a laboratory environment while cannot adapt to 

dynamic working conditions of traffic controllers. The goal of this research is to develop an 

adaptive vigilance model for monitoring vigilance objectively and non-intrusively. In recent years, 

with advanced information and communication technology, a massive amount of data can be 

collected from connected daily use items. Hence, we proposed a hybrid data-driven approach based 

on connected objects for establishing vigilance model in the traffic control center and provide an 

elaborated case study to illustrate the method. Specifically, eye movements are selected as the 

primary inputs of the proposed vigilance model; Bagged trees technique is adapted to generate the 
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vigilance model. The results of case study indicated that (1) eye metrics would be correlated with 

the vigilance performance subjected to the mental fatigue levels, (2) the bagged trees with the 

fusion features as inputs achieved a relatively stable performance under the condition of data loss, 

(3) the proposed method could achieve better performance than the other classic machine learning 

methods.  

Keywords: internet of things, traffic control center, vigilance detection, data-driven, eye 

movements 

1. Introduction: 

Traffic control centers provide navigation assistance, advice, and information services to 

traffic operators, viz. pilots, drivers, and masters. One of the main tasks of traffic controllers is 

monitoring traffic condition and identifying the potential unsafe issues. It has been found that 

human’s cognitive energy depleted fast when they were working on the prolonged, monotonous 

and boring monitoring tasks [1]. Moreover, early researchers had also pointed out that monitoring 

misses occurred frequently due to momentary distractions [2], which is common in traffic control 

operations. For example, air traffic controllers have to answer calls from pilots during monitoring; 

Vessel traffic controllers have to check vessel information lists periodically. Owing to these factors, 

traffic controllers always suffer from vigilance decrement [3], which generally refers that operator 

performance tends to degrade over time [4]. In general, vigilance decrement can be assessed by 

counting the number of critical signals missed and the time lapsed in reacting to critical signals. It 

greatly threats public safety. Statistics of Europe showed that more than 10% of traffic accidents 

were caused by vigilance decrement [5]. 
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To combat this issue, both proactive strategy and reactive strategy had been proposed [6, 7]. 

The proactive strategies reduce the possibility of errors occurring because of human fatigue and 

reduce the likelihood of human fatigue itself. These strategies include using a second operator as 

a second set of eyes, developing clear procedures for monitoring operators, drinking coffee or tea 

and increasing vigilance with vertical vibration [8]. Although proactive strategies have been 

proposed and even implemented in some fields, such as air traffic management and rail operations, 

vigilance decrement continued to occur [8]. Stephen and Jonathan [8] argued that it is impossible 

to keep vigilance in practice. Hence, besides proactive methods, extensive studies have been 

conducted to monitor or detect vigilance decrement in real time [5, 9]. These studies have given 

rise to reactive strategies that alert operators once vigilance decrement occurs. Physiological 

parameters including brain dynamics, blood flow velocity, heart rate, eye movements were 

commonly investigated to develop tools for monitoring operator’s vigilance [10]. 

Among these recent physiological studies, eye movements have received a revival interest 

owing to the following reasons. Firstly, the pupil center corneal reflection technique enabled 

remote, non-intrusive eye tracking [11]. Thus, eye movements can be monitored and measured 

continuously during extended cognitive tasks. Furthermore, decades of scientific evidence 

indicated that there could be a link between sustained attention and eye movements [7]. For 

instance, some studies have shown that blink frequency and blink duration increased with vigilance 

decrement [3]. Finally, the human eyes possess an essential role as they are one of the primary and 

first input media during the monitoring tasks. By tracking the eye movements, cognitive states, 

visual patterns, and information processing can be monitored and analyzed [11]. 

A body of previous research studies investigated the correlations between eye movements and 

vigilance decrement as well as indicated the possibility to develop an eye movement-based 
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detector. Nevertheless, limited studies leverage these correlations to detect vigilance decrement 

automatically. Moreover, they focused on collecting human physiological data and paid limited 

attention to the dynamic working conditions of traffic controllers. Nowadays, with the 

development of advanced information and communication technology (ICT), the internet of things 

(IoT), and artificial intelligence (AI), data about human states and working condition can be easily 

collected and analyzed to proactively supporting human decision-making, learning, and action. 

For example, Akhavian and Behzadan [12] have successfully used mobile sensors and machine 

learning classifiers to recognize construction equipment activities in a working environment. 

Considering the above research gaps and knowledge, the objective of this research is developing 

a hybrid data-driven vigilance model to monitor vigilance in real time using eye movements and 

context data. With this novel vigilance model, the objectives of (1) automatically and effectively 

detecting vigilance decrement, (2) being adapted in an empirical working place and (3) proactively 

alarming operators, could be achieved. 

There are several challenges in achieving this objective. Firstly, the relationship between eye 

movements and vigilance decrement is not clear. There are some contradictions in the existing 

pieces of literature. Saito [13] did not find any significant quantitative changes in saccadic eye 

movement in five hours of eye-tracking tasks. Nevertheless, Bodala [14] found that the saccade 

amplitude and saccade velocity greatly decreased with vigilance decrement. The contradictions in 

the existing literature hinder the development of eye movement-based vigilance model. Secondly, 

sensors like eye trackers always lose track, resulting in data loss. How to maintain the performance 

of vigilance model under the condition of data loss requires more studies. Thirdly, the experiment 

settings and subjects movements always induce noises into eye movements [15]. As a result, the 

performance of vigilance model could be affected by the noisy eye movements.  
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Aiming at achieving the objective of establishing a data-driven vigilance model and dealing 

with the above challenges, this research proposed decentralized feature extraction, graph-based 

feature selection, and two-track bagged trees. The rest of the paper is organized as follows: Section 

2 gives an introduction of the related works. Section 3 introduces the framework of generating the 

data-driven vigilance model and the key parts to support the processes of monitoring vigilance. A 

practical case study was illustrated in Section 4. The authors conclude with a discussion of the 

potential industrial applications, contributions, limitations and future works in Section 5. 

2. Theoretical Background 

In this section, works related to eye movement-based vigilance detection, collecting data from 

connected physical objects and data-driven model for human cognitive states are summarized. 

2.1 Eye-tracking data and vigilance decrement 

There are several studies conducted on observing human’s eye movement on fatigue-inducing 

tasks or vigilance test to prove the potential of eye movements as an indicator of vigilance. 

The percentage of eye closure (PERCLOS) is one of the most widely accepted vigilance 

indexes in the literature [5]. Besides PERCLOS, blinks received a lot of research attention, too [3, 

5]. In Bergasa and Sotelo [5], they used PERCLOS and blink frequency to characterize a driver’s 

level of vigilance. Bodala [14] found that the saccade amplitude and saccade velocity decreased 

with vigilance decrement. Pupil diameter, pupil eccentricity, and pupil velocity were found to be 

correlated with the vigilance performance in the study of McIntire et al. [16]. Among these eye 

movements, fixations received the least attention. In 2017, Bodala et al.[7] proposed a new 

parameter called ‘fixation score,’ which was dependent on the distance of fixation position to the 
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target area of interest. They found that the ‘fixation score’ decrease with the vigilance decrement 

and indicated the possibility of using fixations to detect vigilance decrement. To enhance the 

understanding of eye metrics and vigilance, in this study, we investigated the possibility of 

establishing an eye movement-based vigilance model. 

2.2 Internet of things 

The term Internet of things (IoT) came to public attention in September 2003 [17]. It refers to 

connecting physical objects with sensing, computing and communication capabilities to realize 

machine-to-machine learning and communication [17]. The concept of IoT has been widely 

accepted and fostered a great number of applications in several fields, such as smart cities, and 

manufacturing schedule [18-20]. Nevertheless, Guo et al. [21] suggested that the traditional view 

of IoT focused on a thing-oriented perspective and missed the “harmonious” interaction between 

human and IoT. Moreover, Zhong et al. [22] indicated that the next-generation internet should 

promote the interaction between human, society and smart objects. To improve the human-IoT 

interaction, Guo et al.[21] proposed opportunistic IoT which senses human behaviors and is 

affected by human behaviors. 

With the advanced application of IoT and development of human-IoT interaction, a 

considerable amount of product-generated data, as well as user-generated data which refers to 

those acquired from the online survey, comments, and questionnaires could be collected.  

2.3 Data-driven model of human cognitive states 

With the fast development of IoT and AI techniques as well as machine learning, big data 

analysis can be efficiently and effectively conducted. Hence, data-driven techniques have received 

increasing interests from various fields [23]. Nevertheless, to the best of authors’ knowledge, 
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limited research studies related to data-driven vigilance model could be found. Hence, we reviewed 

works related to the data-driven model of human cognitive states, including fatigue, mental 

workload, cognitive distraction, and vigilance. In general, data-driven models can be classified 

into four types based on their data source: 

Behavioral data: Operators changed their behavioral patterns with their cognitive states. For 

example, Liang and Lee[24] found that drivers made steering less smooth under the condition of 

cognitive distraction. Fairclough and Graham [25] found that tired drivers made larger steering 

wheel movement and fewer steering wheel reversals. These changes allow researchers to measure 

human cognitive states. Pimenta et al. [26] employed a neural network to classify fatigue based on 

behaviors. They extracted performance indicators of fatigue from the human-computer interactions. 

Attributes such as key-down time, the time between keys, mouse velocity, and mouse acceleration 

were appropriate indicators for the continuous classification of mental fatigue. 

Physiological data: Many physiological variables were studied to measure human cognitive 

states. In general, electroencephalographic (EEG) activities, heart activities, and eye movements 

are the most commonly used physiological indicators of cognitive states. Lin et al. [10] proposed 

a generalized EEG-based self-organizing neural fuzzy system to predict the vigilance level of 

drivers. The results of their experimental work showed that it was feasible to estimate the subject’s 

reaction times based on 1-s EEG power spectra. Based on the effects of fatigue on HRV, Patel et 

al. [27] presented an artificial intelligence system to detect early onset of fatigue in drivers. 

Context data: Context data such as environmental data and working condition data were 

usually used to develop biomathematics models in the past. As early as 1982, Borbély [28] 

proposed a two-process model of human fatigue. Processes S and C are used in this model. Process 

S presents the effects of sleeping and wake-up time on the level of human fatigue. Process C 
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considers the interactions between the circadian rhythm and sleep-wake independent. Over time, 

researchers found other data such as sleep inertia and light exposure should be included in the 

fatigue model [29]. However, the performance of these models heavily depends on domain 

knowledge. 

Hybrid data: Some researchers combined data from different sensors to improve the 

performance of the data-driven model. Zhang et al.[30] proposed a driver workload estimation 

model using both vehicle data and eye-movement data. Sarter et al. [31] assessed pilots’ 

monitoring strategies and performance by combining behavioral and eye-tracking data. Ji et al. 

[32] incorporated the visual parameters and the complex contextual information to predict human 

fatigue. 

Unlike the traditional biomathematical model of human performance, the data-driven model 

would not heavily rely on domain knowledge and could efficiently deal with the increasing amount 

of sensing data. Despite the above data-driven models, few works discuss a systematic approach 

to establish vigilance model based on data gleaned from the advanced connected products, 

especially in the traffic management area. 

2.4 AI techniques used in vigilance modeling 

AI approaches to vigilance modeling are mostly based on linear regression, decision tree and 

support vector machine [33, 34]. Among them, the support vector machine is the most widely used 

method. Nevertheless, it cannot thoroughly address the problem of great diversity in eye-tracking 

data [35]. To overcome this challenge, in this study, it is proposed to use bagged trees method. 

The bagged predictor was first proposed in 1996 [36]. It is a method for manipulating training 

data to generate multiple predictors and aggregating results of multiple predictors. It attempts to 
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assemble multiple trees so as to improve model performance. A learning system can be used to 

construct a predictor by taking a bootstrap sample from the training data. Multiple predictors can 

be constructed by generating repeatedly and training the bootstrap sample from the original 

training data. All predictors constructed would indicate the class of the instance and determine the 

final class. 

Comparing with other AI techniques, the bagged trees approach can perform much better in 

analyzing data with substantial classification noise. Breiman [36] indicated that ‘If perturbing the 

learning set can cause significant changes in the predictor constructed, then bagging can improve 

accuracy.’ This advantage makes it very suitable for eye-movement-based vigilance detection, as 

the main challenge of establishing eye-movement data-driven vigilance model is noises. Hence, 

the concept of bagged trees is adopted in this study. 

3. Eye-movement Data-driven Vigilance Model 

To establish the eye-movement data-driven vigilance model, three phases were conducted. In 

the first phase, the platform for collecting and analyzing data was built. In the second phase, the 

detail procedures for selecting features from collected data were conducted. The vigilance levels 

were predicted based on the selected features in the third phase. In the following section, the three 

phases were described.  
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3.1 Platform development 

 

Figure 1: Framework of eye-movement data-driven vigilance model platform 

The platform has two main parts: (1) physical sensors for recording data and providing 

information to users; (2) the cyber part for data processing and modeling vigilance. 

As for physical sensors: the data are collected with connected objects including the eye tracker, 

smartphone and computers. These objects could provide three kinds of information: eye 

movements, human-computer interaction, and user sensing data. The regular commercial eye 

trackers provide gaze or eyelid movements with timestamps. The events of fixations, saccades and 

blinks can be extracted from the raw data of eye trackers using dispersion-based threshold 

algorithms or velocity threshold algorithms [37, 38]. The computer records data of human-

computer interaction, such as the inputs of keyboard and mouse movement. Hence, a set of 

behavior data could be generated. For example, Pimenta et al. [26] had extracted performance 
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indicators of fatigue from the human-computer interactions. Besides these product-generated data, 

user sensing data include online feedback, subjective rates, and complaints are collected. 

In the cyber world, all the collected data are uploaded to the cloud for data analysis. Three 

kinds of information, including eye movements, vigilance performance, and context information 

are collected from several sensors. The enormous amount of data causes several challenges in 

detecting vigilance levels. First, the connected sensors sometimes are under the risk of losing track 

so as to result in data loss. Second, it is a challenge to extract efficient features for forming a large 

and sufficient amount of data. Third, previous studies have shown that eye-tracking data has great 

noises. Considering these challenges and knowledge mentioned in Section 2, the authors proposed 

the following two modules, namely cloud-based data collection and bagged tree-based vigilance 

detection. The cloud-based data collection module pre-process collected data and extracts features 

based on correlation analysis. The extracted features are used as inputs of the bagged trees-based 

vigilance detection module, which generate vigilance levels as outputs. These two modules are 

discussed in the next section. 

3.2 Cloud-based data collection 

 The cloud-based data collection is composed by two parts, i.e. (a) decentralized feature 

extraction and (b) graph-based feature selection, which is constituted by (b-1) graph establishment, 

(b-2) correlation analysis and (b-3) feature selection. More detailed explanations are addressed as 

follows. 
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Figure 2: Illustration of cloud-based data collection 

(a) Decentralized feature extraction: Sensor-generated data are preprocessed separately and 

then uploaded to the cloud. In such a way, feature extraction occurs locally on each sensor (Figure 

2). An extracted feature is represented as 𝐹𝑘 = {𝑓, 𝑠}, where f is the value of the feature, and s is 

the label of the sensor. The label of the sensor depends on its collected information. This method 

benefits from local observations and reduces cloud computation time. The critical advantage of 

decentralized feature extraction is that it is survivable to the loss of sensing nodes. In general, the 

eye trackers always lost track due to light exposure and subjects’ nature shake. If the eye tracker 

lost track, a part of eye movement data would be lost. Hence, we proposed the decentralized feature 

extraction to minimize the effects of data loss on extracting other features.  

(b) Graph-based feature selection: Feature graph is established based on all collected features 

and their inter-relations. Following the label s, all these features belonging to vigilance 

performance are selected and represented as V. The inter-relations between any 𝐹𝑘 and 𝑉 is defined 

as a𝑘 . We selected the features which have close relations with V first. And then select other 

features which have close relations with the selected features. The inter-relations between any 𝐹𝑘 
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and 𝐹𝑙  are defined as 𝑟𝑘,𝑙. 𝑟 is the correlation coefficient. Features are selected using the Algorithm 

1. 

𝑟𝑘,𝑙 = 𝑐𝑜𝑟𝑟(𝐹𝑘, 𝐹𝑙) (1) 

𝑎𝑘 = 𝑚𝑎𝑥 {𝑐𝑜𝑟𝑟(𝐹𝑘, 𝑉)} (2) 

Algorithm 1: Graph-based feature selection 
Input All features 

 for k =1:N.  % N is the amount of features 

 If 𝑎𝑘 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 1 

 𝐹𝑘 → 𝑆𝐹 

 end 

 for 𝐹𝑘 ∈ 𝑆𝐹 

 for l=1:N 

 if 𝑅𝑘,𝑙 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 2  

 𝐹𝑙 → 𝑆𝐹 

 end 

Output SF: Selected features 

3.3 Bagged trees-based vigilance detection 

  

Figure 3: A proposed approach for establishment of vigilance model 

The eye movement data quality is usually affected by missing data and noisy data. Hence, the 

author proposed a two-track bagged trees approach to establish the vigilance model. Figure 3 

illustrated the proposed approach. The selected features are duplicated and then analyzed 

separately. One part of copied features is classified into several types and generate several decision 
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trees independently. The other duplicated features are fused and generate several decision trees 

using the algorithm of bagged trees. All these decision trees determined the vigilance state. In 

general, under the condition of data loss, one or two types of features are lost. Hence, the vigilance 

model generated by fusion data could not provide good performance. The novel method generates 

vigilance model in two tracks: fusion data and classified data. Thus, the vigilance model is 

expected to maintain a relatively stable performance under the condition of data loss. 

Algorithm 2: Two-track bagged trees 

Input SF 

Training Duplicate 𝑆𝐹 → {𝑆𝐹, 𝑆𝐹𝑐} 

 𝑆𝐹 → {𝑆𝐹1, 𝑆𝐹2, … , 𝑆𝐹𝑀}    % classify features based on s 

     for i=1:M 

 𝑆𝐹𝑖 → 𝑇𝑟𝑖 

 end 

 𝑆𝐹𝑐 → 𝐵𝑎𝑔𝑔𝑒𝑑 𝑇𝑟 

Test  

Input F 

 𝐹 → {𝐹1, 𝐹2, … , 𝐹𝐵}        % classification 

 If B<M 

 𝑉 = ∑ 𝑇𝑟(𝐹𝑖)𝑖 

 else 

 𝑉 = 𝐵𝑎𝑔𝑔𝑒𝑑 𝑇𝑟 (𝐹) 

 end 

Output V: Vigilance performance 

In order to build A trees for bagging, we generated A copies of data set 𝑇 = {𝑇1, 𝑇2, … 𝑇𝐴} from 

the training data set 𝑆𝐹 using Sampling with replacement. Based on each of the data set 𝐵𝑇𝑎, a 

decision tree 𝑇𝑟∗𝑎 could be built using Classification and Regression Tree (CART) algorithm.  

𝐵𝑎𝑔𝑔𝑒𝑑 𝑇𝑟 (𝐹) =  ∑ 𝑇𝑟∗𝑎 (𝐹) 𝐴⁄     (3) 
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4. Case study 

We experimented to collect data and illustrated the proposed approach. Twenty students of 

Nanyang Technological University (12 males and 8 females) aged 20-27 years old were recruited 

to participate in this case study. Participants received $20 per hour of compensation for their time 

and efforts. They have normal or corrected to normal vision. People using both prescription glasses 

and contact lens were permitted to participate in this experiment. None of them suffer from 

insomnia. The experiment was approved by the Institutional Review Board of Nanyang 

Technological University. 

The flow of the experiment started with the subjects received a verbal briefing and signed the 

consent form in the brief session. Then, the participant was instructed to rate their fatigue score 

with the Samn-Perelli Mental Fatigue Scale [39] and do the vigilance test for 5 minutes. Moreover, 

the subjects have to monitor vessel traffic conditions to identify potential conflicts for 45 minutes. 

Next, the vigilance test and traffic monitoring task would be done again before the last mental 

fatigue assessment and the last vigilance test. In total, each participant did three vigilance tests and 

two fatigue induce-tasks. This experiment lasted around 120 minutes. 

4.1 Platform development 

The sensors used in this experiment were smartphones, a laptop, and a Tobii eye tracker. 

Participants rated their fatigue levels using Google form with their smartphone. The Samn-Perelli 

Mental Fatigue Scale was adopted in this study. Moreover, participants did choice reaction time 

tasks with a 13-inch laptop as shown in Figure 4. Participants monitored the display and pressed 

target key with a visual cue from the screen. When a visual cue present, the participants should 

press a target key as soon as possible. The visual cues include vowel letters (A, I, U, E, O) and 
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consonant letters (K, L, T, V, X). One of the letters was presented randomly on display. The 

possible locations of visual cue are presented in Figure 5. 

The Tobii Pro X3-120 (as shown in Figure 4) that captures eye movement at 120 Hz was 

attached on the laptop. To ensure precision and traceability of the Tobii Pro X3-120, subjects were 

required to sit 50 cm away from the laptop and the eye tracker. The eye tracker analysis software, 

Tobii studio came along with the eye tracker, enabling users to easily extract data and various 

standard parameters such as fixations, saccades, blinks and pupil diameters with the I-VT methods. 

The eye tracker is portable and light. One downside of the equipment/accompanying software is 

that it cannot differentiate between pure blinks and loss of data (caused by sudden head movement 

or light reflection). Therefore, parameters related to blinks were not considered in this study.  

             
Figure 4: The Tobii X3-120                Figure 5: Possible locations of visual cues 

4.2 Cloud-based data collection 

(a) Decentralized feature extraction: Features were collected following the concept of 

decentralized feature extraction. Smartphones recorded the time, the scores of the Samn-Perelli 

Mental Fatigue Scale. They were divided into three classes: Class 1 (first and second scale; no to 

little fatigue), Class 2 (third and fourth scale; moderate fatigue), and Class 3 (fifth and sixth scale; 

high fatigue), and then uploaded to cloud database. The laptop uploaded time on task, time on test, 

and reaction time to cloud database after participants’ response. The Tobii X3-120 recorded the 
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gaze points, and send to Tobii studio. Then the Tobii studio uploaded eye-tracking features and 

recording time to cloud database. Based on the recording time of the three sensors, all the features 

were integrated. 

In this study, we merged the data using a 5-second time window. All the features belonging 

to the same time window were merged as one data piece. In total, we collected 2400 pieces of 5-

second data for this study. Table 1 shows the 16 features extracted from the sensors. In this study, 

the local gaze features which depend on the visual cues were not studied because a general 

vigilance decrement model is expected to be established. 

Table 1: Features collected by decentralized feature extraction 

Feature Type Parameters Descriptions 

Eye metrics 1. Saccade peak velocity The maximum velocity of the gaze points 

belonging to the saccade. 

2. Saccade mean velocity The mean velocity of the gaze points belonging 

to the saccade. 

3. Fixation duration Duration in milliseconds of a fixation 

4. Saccade duration Duration in milliseconds between two 

subsequent fixations 

5. Saccade amplitude Distance in pixels between two subsequent 

fixations. 
6. Standard pupil left The standardized diameter of the left pupil. 
7. Standard pupil right The standardized diameter of the right pupil. 
8. Saccade number Counts of saccades in a period. 

9. Fixation dispersion Root mean square of the distances from each 

fixation to the average fixation position 
10. Fixation number Counts of fixations in a period. 

11. Fixation quality The standard deviation of positions in pixels of 

gaze points belonging to the fixation.  

12. Fixation velocity 

standard deviation 

The standard velocity deviation of gaze points 

belonging to the fixation. 
13. Fixation Mean velocity The mean velocity of gaze points belonging to 

the fixation. 

Context information 14. Mental fatigue Rated by the Samn-Perelli Mental Fatigue Scale. 

15. Time on test 1 min, 2 mins, 3 mins, 4 mins 

16. Time on task 0 hour, 1 hour, 2 hours 

(b) Graph-based feature selection: To select features from all these original features, graph-

based feature selection was conducted. 
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(b-1) Graph establishment: Figure 6 was depicted based on the previous study [40]; it presents 

the relationship between all the features and vigilance performance. As mentioned in Section 4.1, 

the features that have close correlations with vigilance performance are selected first and other 

features were continued to be selected. A great number of studies have confirmed the high 

correlations between time, mental fatigue and vigilance performance. In contrast, the correlations 

between eye metric and vigilance performance were usually questioned. Hence, the time on test, 

time on task, and mental fatigue were selected first. Algorithm 1 was adopted to select other 

features from eye metrics. 

 

Figure 6: The established graph for correlation analysis 

(b-2) Correlation analysis: According to the previous study [40], we found that the 

correlations between saccade peak velocity and vigilance performance were affected by mental 

fatigue. Hence, we hypothesized that eye metrics would be correlated with the vigilance 

performance subjected to the mental fatigue level as H1. 

The collected eye-tracking data pieces were categorized into three types, namely low mental 

fatigue, moderate mental fatigue, and high mental fatigue depending on the score of the Samn-

Perelli Mental Fatigue Scale. Pearson correlations were performed (separately for low, moderate, 

and high mental fatigue levels) to relate response time and eye metrics. T-test was conducted to 
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test the null hypotheses that there are no correlations between eye metrics and response time. The 

Pearson Correlation and significance are shown in Table 2. The results indicate that in low mental 

fatigue, saccade mean velocity, saccade amplitude, fixation number, and fixation velocity are 

correlated with vigilance performance. In Moderate mental Fatigue, saccade mean velocity, 

fixation duration, and saccade number, fixation mean velocity are correlated with vigilance 

performance. In high mental fatigue, only fixation duration shows no correlation with the vigilance 

performance. The correlations between eye metrics were tested using Pearson correlations, too. 

Table 2: Correlation analysis 

Variables correlated with Reaction time 

Low Mental Fatigue Moderate Mental Fatigue High Mental Fatigue 

r p r p r p 

1. Saccade peak velocity 0.057 0.211 -0.053 0.0245 0.128** 0.002 

2. Saccade mean velocity 0.153** 0.001 -0.118** 0.010 0.163** 0.000 

3. Fixation duration 0.03 0.514 -0.164** 0.000 0.071 0.083 

5. Saccade amplitude 0.137** 0.003 -0.089 0.051 0.143** 0.000 

6. Standard pupil left -0.016 0.727 0.060 0.188 0.092* 0.025 

7. Standard pupil right 0.068 0.141 0.074 0.105 0.088* 0.032 

8. Saccade number -0.027 0.553 0.211** 0.000 -0.151** 0.000 

10. Fixation number -0.14** 0.002  -0.023 0.619 0.108** 0.008 

11. Fixation quality 0.036 0.437 0.064 0.160 0.133** 0.001 

12. Fixation velocity 

standard deviation 

0.154** 0.001 0.016 0.730 0.105* 0.011 

13. Fixation mean velocity 0.077 0.092 0.184** 0.000 -0.088* 0.033 

**. Correlation is significant at the 0.01 level (2 tailed) 

*. Correlation is significant at the 0.05 level (2 tailed) 

(b-3) Feature selection: To use the Algorithm 1 to select features, the threshold of correlation 

coefficient should be selected. In this case study, it was set as 0.1. Hence, the features that have r 

larger than 0.1 were selected. The results of the data analysis suggested that pupil parameters were 

not significantly correlated with response time. However, we found that they were closely 

correlated with fixation and saccade parameters. The detail results of correlations among the eye 

movement parameter are discussed in the authors’ other works. According to Algorithm 1, the 
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pupil diameters were selected. Moreover, it is found that the correlations between eye movements 

and vigilance performance were subjected to the level of mental fatigue. Finally, 14 features were 

selected. The features ‘4. Saccade duration’ and ‘9. Fixation dispersion’ were removed due to low 

correlations. 

4.3 Bagged trees-based vigilance detection 

Following the steps mentioned in Section 3.3, all the selected features were classified into 

three types, as listed in Table 3. The eye metrics were divided into fixations related parameters, 

saccades related parameters, and pupil related parameters. The context features involve time on 

task, time on test and mental fatigue. Feature fusion refers to integrate all selected features as inputs 

of the bagged trees. 

Table 3: Classification of the selected features 

Feature types  Parameters 

Eye metrics Fixations Fixation number  

Fixation duration  

Fixation quality 

Fixation mean velocity 

Fixation velocity standard deviation 

Saccades Saccade number  

Saccade amplitude  

Saccade peak velocity  

Saccade mean velocity  

Pupil Standard left pupil diameters 

Standard right pupil diameters 

Context features Mental fatigue 

Time on tasks 

Time on test 

Fusion features Eye metrics 

Context features 

The efficiency of Algorithm 2, namely two-track bagged trees, in addressing data loss was 

tested in this section. Six conditions of data loss were stimulated. Condition 1, all data were 

collected, the fusion features were used as inputs. Condition 2 refers to the loss of eye-tracking 
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data. Only context features were used as inputs. In contrary, all context data were lost in Condition 

3, so eye metrics were used as inputs. Conditions 4-6 refer to the three different levels of data loss 

in eye-tracking data. Eye metrics have several parameters; some kinds of parameters would be lost 

due to hardware limitations. Hence, we simulated the three conditions and named them with their 

inputs, such as “fixations”, “saccades”, and “pupils”.  

The performance of the proposed bagged trees-based vigilance detection model was tested 

across the six conditions. It was hypothesized as H2 that there is no difference in the performance 

of vigilance detection model across the six conditions. MATLAB 2017a was used to generate 

decision trees and bagged trees for vigilance detection. In this study, the Bayesian optimization 

was used to preliminary select optimal hyperparameters for the bagged trees model. After a 

preliminary study, the number of trees was set as 1500 and the minimum leaf size was set as 1. 

Vigilance performance includes response time. Hence, we generated the regression models. 10-

fold cross-validations were conducted to verify the models. The root-mean-square error (RMSE) 

was utilized to assess the performance of the regression models. One-way ANOVA was performed, 

and then Tukey HSD Test was utilized to do a post hoc test. 

The result of one-way ANOVA test showed the one or more conditions achieved significantly 

high performance (F (5, 54) = 392.59, p < 0.01). The post hoc test showed that there are significant 

differences between fusion features, context, eye metrics, and fixations (p < 0.05). Nevertheless, 

the differences between saccades and pupils were not significant. 

The results showed that using the context as inputs yielded better performance than using the 

eye metrics as inputs. Specifically, without the inputs of the context features, the RMSE of the 

regression models greatly increased (Figure 7). Hence, the authors concluded that the context 

features contribute more to the vigilance decrement detection than eye metrics. The results could 
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be explained from the above correlation analysis. The context information includes mental fatigue 

levels which could significantly affect the correlations between eye movements and response time 

(Table 2). Hence, without the context information, the performance of eye movement-based 

vigilance model would be impaired. Also, though the correlations between pupil and response time 

are not significant, the pupil parameters could contribute to the vigilance model. Hence, the 

proposed Algorithm 1 for feature selection is feasible. In other words, the proposed method could 

achieve a relatively stable performance under the condition of data loss. 

The bagged trees with the fusion features as inputs yielded the best performance with the 

lowest RMSE (0.119) and the smallest standard deviation (0.0148) for the response time. 

 
Figure 7: Model performance across different inputs 

Table 4: Tukey HSD P-value 

 Fusion Context Eye metrics Fixations Saccades 

Fusion      

Context 0.001**     

Eye metrics 0.001** 0.001**    

Fixations 0.001** 0.001** 0.001**   

Saccades 0.001** 0.001** 0.023* 0.516  

Pupils 0.001** 0.001** 0.001** 0.899 0.198 

**. Difference is significant at the 0.01 level 

*. Difference is significant at the 0.05 level  
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4.4 Comparison with other methods 

To test H3 that the performance of the proposed bagged trees-based vigilance detection model 

is better than the other three models, a comparison test was conducted. We compared the proposed 

method with support vector machine, decision trees, and linear regression, as they were the widely 

used methods for cognitive models. Four models were generated based on the fusion features 

collected in the case study. Their performance was assessed with the RMSE. 10-fold cross-

validations were conducted. One-way ANOVA was used to do the statistical analysis, and Tukey 

HSD Test was utilized to do post hoc test. The null hypothesis: there is no difference between the 

performance of the proposed method and other methods. 

The F ratio (F (3, 36) = 834.77, p < 0.01) shown in one-way ANOVA indicated the significance 

of performance difference. The post hoc test also indicated the significance of the differences 

between pairs. Considering the results of F-test, Figure 8 presented that our method performed 

better than other methods significantly. Overall, the performance evaluation result was very 

positive. 

The results can be further explained in two aspects. On the one hand, the correlations between 

eye-tracking data and vigilance performance were relatively low although they are significant. 

Consequently, the traditional linear regression cannot achieve good performance in detecting 

vigilance impairment using eye-tracking data. On the other hand, the high classification noises of 

eye-tracking data induce great challenges in applying support vector machine. As a result, both 

support vector machine and linear regression cannot provide a good result in this case study. In 

contrast, decision tree provided relatively better performance than those two methods. By bagging 

hundreds and thousands of decision trees, the proposed two-track bagged trees achieved the best 

performance.  
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Figure 8: RMSE of vigilance models 

4.5 Discussion 

The case study illustrated the process of establishing data-driven eye movement-based 

vigilance model, the procedures of selecting eye metrics, and demonstrated the efficiency of the 

proposed two-track bagged trees in dealing with eye-tracking data loss. In Section 4.2, the H1 was 

tested. The results indicated that the correlations between eye metrics and vigilance performance 

subjected to fatigue levels. Specifically, more eye parameters have correlations to vigilance 

performance with the increase of fatigue level. Nevertheless, the correlations are low although they 

are significant. 

The low correlations may be caused by the following factors: first, great variances of eye 

metrics. As mentioned in Section 2.1, eye-tracking data has long been found as useful indicators 

of vigilance performance, while the correlations between them were questioned in some studies. 

Based on the authors' previous study and this study, we found that the eye-tracking data at the risk 

of great variances due to noises, track loss, and long recording-time effects. Second, a large sample 
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size used in this study. We collected 2400 pieces of data for data analysis. The correlations are 

normally low when the sample size is large due to the introduction of noises. Third, we made 

scatter plots after correlation analysis and found non-linear correlations. In conclusion, the 

significant results indicated the existing of correlations; the low index indicated that the correlation 

might be non-linear. In this study, we focused on realizing the detection of vigilance performance 

even the data quality is low. Hence, we proposed to use bagged trees instead of linear regression 

method to model vigilance performance under the condition of data loss. 

In Section 4.3, the H2 was tested to investigate the effects of data loss. Under six conditions 

of data loss, the proposed method showed significantly different performance. Although the 

proposed method cannot maintain the performance under the condition of context data loss, it can 

maintain relatively stable performance under the condition of partial eye-tracking data loss. The 

H3 was tested in Section 4.4. Comparing with three classical methods, linear regression, decision 

tree, and support vector machine, the proposed method can achieve significant lower RMSE. 

Considering the results obtained, we can deduce that the proposed method can well conquer the 

problem of eye-tracking data loss, classification noises, and the non-linear correlations between 

eye-tracking data and vigilance performance. 

5. Conclusion 

In the traffic control center, vigilance decrement is a normal phenomenon that has a great 

negative impact on human performance. It could occur at any time. This study intends to propose 

a data-driven method that proactively detects vigilance decrement using connected physical 

objects and artificial intelligence techniques. The main contributions are summarized as below: 
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First, a novel framework of developing an eye movement data-driven vigilance model was 

proposed. Graph-based feature selection and distributed model generation are proposed to improve 

computational efficiency and maintain model performance under the condition of data loss. Two-

track bagged trees are proposed to generate vigilance models. As such, the research gaps about eye 

movement-based detection of vigilance decrement and alarming proactive mechanism can be 

bridged by this new model.  

Second, a clarification of the correlations was conducted between eye movements and 

vigilance decrement. An observed trend is the increasing regression coefficient of the eye 

movements against the response time in different mental fatigue classes. The mentioned 

relationship is a new finding, as the authors had only come across literature that discussed the 

existence of the relationship between eye movements and response time (i.e., statistically 

significant) alone, without considering its influence under different states of mental fatigue.  

Third, a practical vigilance model was achieved based on eye movements and context 

information. It enables objectively and unobtrusively detection of vigilance decrement. Moreover, 

with the consideration of context information, the vigilance model could be adapted to the dynamic 

conditions of the traffic controller and could achieve better performance than eye movement-based 

model.  

Fourth, a pioneer work of applying IoT techniques in human factors study was demonstrated. 

We enriched the literature of IoT-application with eye movement data collection in the traffic 

control field. We made a moving-forward step of using data generated from IoT and human-IoT 

interaction to establish a vigilance model. The human-IoT scenario design could be highly adapted 

in an empirical working place and supporting dynamic working conditions of traffic controllers.  
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The proposed framework adopts screen-based eye trackers to collect eye movements, so the 

vigilance performance of operators can be monitored objectively and non-intrusively by the 

proposed approach. The limitations to our study stemmed from the unclear data classification and 

limited data collected in the laboratory condition. In the field of transportation, many data could 

be collected from embedded automated identification systems, such as vehicle location and vehicle 

speed. Hence, in future studies, the authors would like to propose a classification scheme for 

human-centric data in the vision of IoT. Moreover, more data would be collected for the practical 

case study.  
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