High performance city rendering in Vulkan

Alex Zhang

Fraunhofer Singapore
alex.zhang@fraunhofer.sg

Henry Johan
Nanyang Technological University
Fraunhofer IDM@NTU
henry.johan@fraunhofer.sg

Kan Chen
Fraunhofer Singapore
chen kan@fraunhofer.sg

Marius Erdt
Nanyang Technological University
Fraunhofer Singapore
marius.erdt@fraunhofer.sg

Figure 1: Rendering a portion of the Berlin city dataset! with 1.48M draw calls at 30FPS on a GTX 1080Ti. After CPU and GPU
culling, 88K textures were streamed and rendered concurrently. Berlin city dataset used with permission.

ABSTRACT

City scale scenes often contain large amounts of geometry and
texture that cannot altogether fit on GPU memory. Our ongoing
work seek to minimise texture memory usage by streaming only
view-relevant textures and to improve rendering performance using
parallel opportunities offered by Vulkan, the latest generation of
graphics APL Our result presents a high performance rendering of
a city with streaming textures after CPU and GPU culling.

CCS CONCEPTS

« Computing methodologies — Rendering;

KEYWORDS
Massive rendering, texture streaming, Vulkan

ACM Reference Format:

Alex Zhang, Kan Chen, Henry Johan, and Marius Erdt. 2018. High perfor-
mance city rendering in Vulkan. In Proceedings of SA ’18 Posters. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3283289.3283342

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SA ’18 Posters, December 04-07, 2018, Tokyo, Japan

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6063-0/18/12.

https://doi.org/10.1145/3283289.3283342

1 INTRODUCTION

Real-time rendering of massive cities is a desirable feature in the
Geographic Information System (GIS) domain, offering many appli-
cations for city planning and information portals. However, large
textured cities are computationally expensive to render due to CPU
overheads in draw calls and memory constraints. For the Berlin
city dataset!, 3D models are heavily fragmented with one or more
meshes for each building’s face, one texture per mesh. This large
data leads to an inflated count of more than five million textures
with a total size of 441GB in raw RGBA format.

Recent work in web-based virtual maps [El Haje et al. 2016;
Prandi et al. 2015] addresses large 3D data through progressive
streaming of a smaller subset. These 3D contents are spatially par-
titioned into tiles and transmitted to client-side based on each tile’s
expected visibility within a camera frustum. Within the gaming
industry, authors have developed virtual textures [Chen 2016; Obert
et al. 2012] to overcome storage and performance constraints when
using a large number of textures. Their methods designate entire
scene textures (including mipmaps) as a set of tiles in a virtual
address space, with only a small relevant subset mapped to the
device’s address space for rendering.

On a system level, the Vulkan graphics API aims to improve
CPU performance through efficient batch updates for drawing and
state changes. It also offers CPU parallelism for rendering and

Uhttps://www.businesslocationcenter.de/en/downloadportal


https://doi.org/10.1145/3283289.3283342
https://doi.org/10.1145/3283289.3283342

resource transfer, which we exploit for texture streaming. Our
current implementation performs broad phase culling on the CPU
and narrow phase culling on the GPU before textures are selected
for loading and transfer. To minimise colour discrepancies between
loaded and yet to be loaded mesh textures, we propose to use a
precomputed city colour map to apply an initial colour to all meshes.

2 OUR APPROACH

To minimise device memory usage, only meshes that are visible
to the camera will have their textures loaded. This is determined
using a broad and a narrow phase of geometry culling methods. The
broad phase CPU culling first spatially partitions the scene using a
quadtree, and then performs in parallel a frustum and AABB inter-
section test on each partition’s mesh-fitted bounding box. Meshes in
visible partitions are then submitted through the rendering pipeline
for narrow phase culling, which includes backface, frustum, and
occlusion culling with early-z test [Kubisch and Tavenrath 2014].
The fragment shader simply outputs visible mesh IDs into a storage
buffer, which in turn is accessed on CPU-side to load mesh textures.

In the next frame, textures are streamed concurrently from disk
to device memory using the mesh ID list. This is done in batches
by first loading texture images onto host (CPU) memory before
transferring to the device. This batch processing has a predefined
timeout (1 second) to prevent waiting on a large number of textures
to load or unload, and a short timeout ensures loaded textures stay
relevant to the changing camera view. To efficiently unload textures
and free up memory, meshes with successfully loaded textures are
stored in an unordered map, which can be unloaded when either a
texture count or memory size threshold is reached.

Overall, our proposed rendering system has three concurrently
operating parts. The first is rendering, the second is recording draw
commands and the third is streaming texture images. Many issues
arise in recording new drawing commands as Vulkan disallows
updating texture descriptor sets already used in a command buffer
submitted for drawing. To ensure valid synchronisation, two com-
mand buffers, each given a unique descriptor set, are swapped
between each other, one to record new drawing commands while
the other is submitted for rendering. In our implementation, com-
mand buffers are swapped as soon as the other is recorded so that
texture changes are rapidly updated. This separation of processes
allows rendering to be performed as fast as possible without being
blocked by command recording or texture streaming.

Another feature of our system attempts to reduce mesh colour
discrepancies for black meshes with yet-to-load textures. We use
a precomputed city colour map that gives each mesh a relevant
colour picked from the highest mipmap level of its intended texture,
with each texel coordinate mapped to a mesh ID. This gives the
scene a congruent appearance with little abrupt "popups’.

3 RESULTS AND DISCUSSION

Our proposed system is able to render and stream textures of a
Berlin city model containing about 5M meshes (13.5M triangles)
and 5M textures in total. Frame rates and textures streamed per
second is proportional to the number of draw calls. At 1920x1080
resolution with textures mostly loaded, a view submitting 302K,
723K, 5.04M draw calls runs at 119FPS, 57FPS, 12FPS respectively.

Preprocessing (scene partitioning)

CPU
Broad phase culling

Record drawing commands
Texture streaming

GPU
GPU culling (early z-test)

Record mesh IDs in storage buffer

Figure 2: Overview of the rendering system. First, broad
phase culling finds camera-visible quad-tree partitions, then
submits those meshes for drawing. The fragment shader
with early-z test outputs visible mesh IDs into an array, and
those mesh’s texture are subsequently streamed. These pro-
cesses run at different rates with no visible stuttering.

Memory costs are fairly reasonable as loaded textures relates pre-
cisely to displayed fragments. A view that loads 390K textures (7.7%
of the scene’s total textures) requires 2.85GB (27%) of device mem-
ory. These textures are loaded at half resolution and precompressed
using Block Compression (BC3) without sacrificing much image
quality, and provides a 94% reduction in memory size (441GB down
to 13.7GB). In the future, textures will be loaded more optimally at
various mipmap levels based on a distance metric.

It is noted that meshes submitted for rendering after broad phase
culling is not the most optimal for rendering performance as only
about 10-20% of these meshes are visible after GPU culling. Also
for a scene of such scale, many far meshes are sub-pixel in size and
not rasterised. Future work in this area seek to cull about 50% more
meshes on the CPU using clustered culling to further reduce GPU
time and also to perform indirect drawing.

ACKNOWLEDGMENTS

This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its International Research
Centres in Singapore Funding Initiative.

REFERENCES

Ka Chen. 2016. Adaptive Virtual Textures. GPU Pro 7: Advanced Rendering Techniques
(2016), 131.

Noura El Haje, Jean-Pierre Jessel, Véronique Gaildrat, and Cédric Sanza. 2016. 3D
cities rendering and visualisation: a web-based solution. Eurographics.

C Kubisch and M Tavenrath. 2014. Opengl 4.4 scene rendering techniques. NVIDIA
Corporation 5 (2014).

Juraj Obert, JMP van Waveren, and Graham Sellers. 2012. Virtual texturing in software
and hardware. In ACM SIGGRAPH 2012 Courses. ACM, 5.

F Prandi, F Devigili, M Soave, U Di Staso, and R De Amicis. 2015. 3D web visualization
of huge CityGML models. International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences 40 (2015).




	Abstract
	1 Introduction
	2 Our approach
	3 Results and discussion
	Acknowledgments
	References

