
High Performance Texture Streaming and Rendering of Large
Textured 3D Cities

Alex Zhang
alex.zhang@fraunhofer.sg
Fraunhofer Singapore

Chen Kan
chen.kan@fraunhofer.sg
Fraunhofer Singapore

Henry Johan
henryjohan@ntu.edu.sg

Nanyang Technological University
Fraunhofer IDM@NTU

Marius Erdt
marius.erdt@fraunhofer.sg

Nanyang Technological University
Fraunhofer Singapore

Figure 1: A bird’s eye rendering of the Berlin city dataset (total 5.7M textures) in 5.7ms (4K resolution) with 13.7K texture
mipmaps currently streaming at 56.6MB/s. Top inset: Gray levels indicate the loaded texture mipmap levels, with lighter and
darker levels denoting higher and lower resolution mipmaps. Bottom inset: Mesh textures of mipmap level 4 being streamed
and cached in the sparse partially-resident image.

ABSTRACT
We introduce a novel, high performing, bandwidth-aware texture
streaming system for progressive texturing of buildings in large 3D
cities, with optional texture pre-processing. We seek to maintain
high and consistent texture streaming performance across different
city datasets, and to address the high memory binding latency in
hardware virtual textures. We adopt the sparse partially-resident
image to cache mesh textures at runtime and propose to allocate
memory persistently, based on mesh visibility weightings and esti-
mated GPU bandwidth. We also retain high quality rendering by
minimizing texture pop-ins when transitioning between texture
mipmaps. We evaluate our texture streaming system on large city
datasets, including a tile-based dataset with 56K large atlases and a
dataset containing 5.7M individual textures. Results indicate fast
and robust streaming and rendering performance with minimal
pop-in artifacts suitable for real-time rendering of large 3D cities.

1 INTRODUCTION
Although commercial desktop systems can render large 3D cities in
real-time, they have limitations when rendering millions of textures
hundreds of gigabytes in size, due to slow data transfers and a re-
strictive GPU memory capacity. Current systems can automatically

page data in and out of system memory (RAM) when GPU mem-
ory is oversubscribed but rendering performance will be heavily
impacted. A simple method to improve performance is to globally
reduce texture resolutions, with textures permanently residing on
GPU memory. Another more intelligent method is to adapt GPU-
resident texture resolutions to a level-of-detail metric. This method
is facilitated by a texture streaming system, where selected texture
mipmaps are cached in a virtual texture for rendering. However,
such texture streaming systems have difficulties maintaining a con-
sistent streaming performance and a high quality rendering with
minimal texturing artifacts.

In this paper, we present a texture streaming system that is fast,
consistent, and provides high quality rendering for 3D cities with
large quantities of textures. We adopt hardware virtual texturing to
cache mesh textures in runtime using a fast atomic counter scheme,
and focus on amortizing its high memory binding latency. It is done
by adapting texture streaming rate to the estimated GPU load and
the visual perceptibility of meshes. Our contributions are:

• A texture streaming system for rendering 3D cities with over
five million textures, with or without the need for preliminary
processing to generate texture atlases. We propose a single GPU-
pass, multithreaded system for texture streaming, and a texture

Alex Zhang, Chen Kan, Henry Johan, and Marius Erdt

caching scheme for hardware virtual texturing with persistent
memory allocation.

• A GPU bandwidth estimation function derived from previous
virtual texture memory binding performance. We also propose
functions (robust across datasets) that limit texture streaming
rate and texture resolutions using the GPU bandwidth estimation
to ensure a stutter free rendering.

• A color blending method to minimize texture pop-ins when
texture mipmaps change. We maintain original, per-mesh colors
in a City Colormap, which is used to restore correct mesh colors
when sampling from low resolution mipmaps.

• An optional mesh discretization scheme to generate texture at-
lases by grouping nearby and similarly oriented meshes together.
These texture atlases improve texture streaming performance
and reduce texture caching memory.
We evaluate our texture streaming system performance and

rendering quality using large city datasets, including the Berlin
dataset [1] with 40GB of compressed texture data and the Helsinki
dataset [15] with 56K large texture atlases. Our evaluation reveals
a significant improvement in rendering performance and image
quality compared to a baseline without adaptive texture streaming
and mipmap color blending. We also compare the results of our
method to the Unity game engine’s using the Helsinki city dataset.

2 RELATED WORK
2.1 City rendering in GIS
Virtual globe visualization systems are capable of rendering large
city models and terrain on the web for Geographic Information
System (GIS) purposes. These systems stream large amounts of
geometry and texture contents to desktop and mobile clients [4, 8],
adapting a set of textured geometry tiles to a level-of-detail (LOD)
suitable for real-time rendering, based on camera views [7] and
rendering timemeasurements [6]. These methods do not implement
virtual texturing using per fragment texture address translation, but
rather use a set of pre-generated texture coordinates per surface,
resulting in high memory requirements and numerous texture state
changes that impact rendering performance.

2.2 Virtual texturing systems
Virtual texturing systems are designed to cache a small subset of the
scene textures in fast memory for rendering. They provide a system
to move textures in and out of graphics memory depending on
LOD factors and resource availability. Tanner et al. [17] proposed
the clipmap to keep clipped portions of the terrain mipmap in
memory for rendering, while Cline et al. [3] proposed a texture tile
caching system for streaming textures in a low bandwidth system.
Lefebvre et al. [9] introduced a texture caching system for arbitrary
meshes with partial GPU support for visibility detection. Taibo et
al. [16] proposed dynamic texturing of terrains using a clipmapping
procedure driven by programmable GPU.

Recent virtual texturing methods emulate virtualization of tex-
ture memory, by sparsely allocating physical memory for virtual
texture regions (called pages) required for rendering. They use an
indirection texture [10] as a page address translation table that
maps a page in virtual address to a region in the physical texture
cache. Van Waveren proposed software virtual texturing [18] with

solutions for texture filtering and feedback rendering (i.e. decid-
ing which pages are made resident in the physical cache). Games
engines have also adopted virtual texturing for terrain rendering.
Widmark [19] proposed procedural virtual texturing to mitigate
texture blending (splatting) costs, by caching splatter results in the
virtual texture. Chen [2] improved on the prior with adaptive virtual
textures to support a large game world terrain. In the virtual reality
field, Mueller et al. [11] designed a parallel framework to compress
and stream object-space shading data of game-like scenes for re-
mote rendering, using a virtual texture with atomic GPU memory
allocation. However, software virtual texturing methods forsake
texture filtering in hardware as physical page boundaries and tex-
ture coordinates are not contiguous, hence, robustly implementing
trilinear or anisotropic filtering will be difficult [13]. Additionally,
page translations invoke multiple in-shader memory accesses that
adversely affect performance.

2.3 Hardware virtual texturing
In hardware virtual texturing [13], page address translation and tex-
ture filtering are directly supported in hardware. It reduces the page
translation overheads and lowers the page table memory footprint,
while simplifying implementation without the need to update page
mappings in the application end. Schmitz et al. [14] apply hardware
virtual texturing to cache textures for point cloud rendering with a
predictive page management based on camera movements.

The sparse (partially-resident) image is an interface for hard-
ware virtual texturing on the Vulkan graphics API to cache texture
mipmaps for rendering. Like an image object, it has several layers
with a full mipmap chain per layer. It is logically divided into blocks
where each can be sparsely allocated with physical memory on de-
mand. The sparse image is designed for mega-texturing [18], where
the scene’s entire texture space is mapped in its virtual image space.

However, using hardware virtual texturing (including the sparse
image) is not without drawbacks. On current systems, progressively
binding sparse image memory blocks has a high GPU latency cost
that causes severe frame rate stuttering. Under testing, we discover
that the time taken to bind a memory block increases quadratically
with every memory block bound, especially when memory blocks
are sparsely bound across more than thirty sparse image layers.
This binding cost is limited by the operating system and driver
implementations [13], whichwe seek to amortize using our adaptive
streaming method.

The sparse image is also inflexible to program outside of its
intended purpose (i.e. mega-texturing) and provides only one set of
texture coordinates to address all texture mipmaps. To address the
requirement of not having to pre-process city textures and to reduce
memory binding latency, we propose a runtime texture caching
scheme that semi-compactly packs textures in the sparse image
cache.

3 OUR TEXTURE STREAMING PIPELINE
Our texture streaming pipeline is composed of a texture streaming
and a rendering path. The texture streaming path works in isolation
from the rendering path, loading batches of textures that are per-
tinent to the current camera view and caching them in the sparse

High Performance Texture Streaming and Rendering of Large Textured 3D Cities

GPU CPU

Get Visible
Mesh Metadata

Data
Compaction

Fragment Shader Compute Shader

GPU Load
Estimation

Texture
Load

Sparse Image
Caching

Exit
Condition

Texture Streaming Task Group

Retrieve
Metadata

Rendering Thread

 Texture
Streaming

Invoke
Compute

Gen. Render
Commands

Sparse Image Textures Atlases

Mesh Textures

Preprocessing

1

2 3 4

5678

Figure 2: An overview of our texture streaming pipeline. CPU and GPU processes work together to load visible mesh textures
from secondary storage and transfer it to the sparse image for rendering. Dotted lined boxes illustrate concurrency of a process
or a group of processes. Red arrows denote time-expensive CPU-GPU inter-operations and gray arrows illustrate the flow of
data between two processes. The blue arrow invokes the texture streaming task group.

image at the end of the pipeline. We exploit task-based parallel pro-
cessing in most of the texture streaming subsystems to accelerate
texture loading and sparse image caching. We summarize texture
preparation, streaming and display as eight distinct subsystems
(Figure 2).

3.1 Generating atlases and the City Colormap
For city datasets with many textures, we recommend packing tex-
tures into atlases for faster texture streaming performance. We pro-
pose a mesh discretization scheme to pack textures of meshes with
similar orientations together in an atlas. Meshes are first discretized
into uniform rectangular regions, and then further discretized into
six subregions according to the closest axis-aligned normal. This
procedure resembles backface culling in geometries, as textures of
back facing meshes are not loaded if they are not invoked by the
fragment shader. Meshes in each discretized subregion have tex-
tures of the same height packed together in an atlas. We pack mesh
textures into an atlas in a left-to-right, top-to-bottom order. We
also pack textures in the next discrete region into existing atlases
with empty spaces to reduce the number of atlases generated. This
has the advantage of caching more mesh textures at no additional
streaming cost.

We introduce a City Colormap texture that stores a color per
mesh in the city dataset. It acts as a color placeholder for mesh
textures not yet cached in the sparse image. It is also used tomitigate
texture pop-in artifacts when transitioning from a low to high
resolution mipmap. This distinct color change is due to sampling
errors from smaller mipmaps that are increasingly erroneous. We
solve this problem by linear interpolation of the original mesh color
in the City Colormap and the color sampled in the sparse image,
based on the mipmap level:

𝑐 =

(
1 − 𝑀

𝑀𝑚𝑎𝑥

)
𝑐𝑠 +

(
𝑀

𝑀𝑚𝑎𝑥

)
𝑐𝑜 (1)

where 𝑐𝑠 is the sampled color, 𝑐𝑜 is the original mesh color,𝑀 is the
sampled mipmap level, and𝑀𝑚𝑎𝑥 is the maximum mipmap level of
the mesh texture. This method retains correct low frequency colors
for smaller mipmaps while smoothly blending higher frequency de-
tails from higher resolution mipmaps, significantly reducing texture
pop-in artifacts.

3.2 Generating visible mesh metadata
This subsystem generates metadata that describes visible mesh
textures for streaming. We take advantage of the GPU pipeline
to perform backface, frustum and occlusion culling (early z-test)
automatically before the fragment shader stage. In the fragment
shader, we compute a mipmap level and a weight value (both
integers) for all visible meshes and store them in a fixed size array
buffer (called the Sparse MeshMetaData array) at the respective
mesh index. Later, this array will be compacted and transferred to
CPU local memory for use in texture streaming. We also render
to an offscreen buffer at a larger camera field of view (FOV) than
the viewport FOV to anticipate camera movements during texture
streaming. In this way, there will be fewer texture pop-ins at the
edges of the viewport during rapid camera movements.

Themipmap levelmetadata specifies the optimal mipmap level
to load and stream a mesh texture. We compute the precise mipmap
level 𝑀𝑠 that mesh textures will be sampled at under a specific
anisotropic filtering level 𝐹𝑠 , using the implementation by Holle-
meersch et al. [5]. Since a mesh spanning multiple fragments can
produce different mipmap levels, we select the lowest mipmap level
as the mipmap level metadata𝑀 , derived as𝑀 = ⌊𝑀𝑠 ⌋ if ⌊𝑀𝑠 ⌋ < 𝑀 ,
where the brackets ⌊ ⌋ denote the round-down operation. We can
control the resolution range of texture mipmaps for texture stream-
ing by adjusting the anisotropic filtering parameter 𝐹𝑠 . Note that
during rendering, we sample mesh textures at an anisotropic filter-
ing level 𝐹𝑟 that is lower or equal to the anisotropic filtering level
𝐹𝑠 used to determine𝑀 , in order to preload mipmaps and minimize

Alex Zhang, Chen Kan, Henry Johan, and Marius Erdt

texture pop-ins. In our implementation, we define 𝐹𝑟 =
𝐹𝑠
2 where

1 ≤ 𝐹𝑟 ≤ 𝐹𝑠 .
The weight value metadata represents the perceptual impor-

tance of a mesh. It is used to determine mesh texture inclusion
in the texture streaming process and its streaming priority or-
der. In the fragment shader, each fragment invocation contributes
some amount of weight, and these per-fragment weights are atom-
ically summed to give the mesh weight value. By default, a +1
per-fragment weight contribution is added for each visible frag-
ment. This contribution, by itself, gives the screen-space size (i.e.
fragment count) of a mesh and thereby forms the basis of the stream-
ing priority order. Under perspective projection, nearby meshes will
have a larger screen-space size and will have textures loaded prior
to faraway or partially occluded meshes. We propose the following
weight contributions to meshes within the viewport:

• +0 to 𝜎 depending on fragment distance from the camera. This
is derived from 𝜎 · clamp(1

max(𝑐𝑧 , 1) , 0, 1), where 𝜎 = 10 is the
maximum weight contribution, and 𝑐𝑧 is the fragment’s camera-
space depth value, assuming 𝑐𝑧 is generally between 0 and 100.
The function increases weighting for small meshes near the
camera that are quite perceptible despite having a low weight
value from the screen-space size contribution. This weight is
scene dependent as it is derived from the camera-space distance.

• +0 to 𝜌 depending on fragment’s loaded mipmap level. This
is derived from 𝜌 · min(𝑀

max(𝑀𝑚𝑎𝑥 , 0.000001) , 1), where 𝜌 = 8 is
the maximum weight contribution integer, 𝑀 is the fragment’s
loadedmipmap level, and𝑀𝑚𝑎𝑥 is the fragment’s largest mipmap
level. The function increases weighting for meshes with lower
resolution mipmaps, in order to maintain similar mipmap levels
for nearby meshes, smoothing out resolution disparities during
texture streaming.

3.3 Data compaction in the compute shader
The Sparse MeshMetaData array contains mesh descriptors for all
meshes in the scene. It is a sparsely populated array since the frag-
ment shader only writes mesh descriptors for visible meshes. This
sparse array is entirely transferred fromGPU to CPUmemory every
texture streaming cycle, which is slow as the array can be over five
million long. Therefore, we propose to compact the sparse array
on the GPU using a compute shader before transferring it to CPU
memory. We use a simple atomic counter method [5], where each
compute invocation, respective to an index in the Sparse MeshMeta-
Data array, copies a mesh descriptor to the output MeshMetaData
array at an atomically incrementing index.

To further reduce the size of the MeshMetaData array and conse-
quently the number of textures to stream, we introduce a threshold
value 𝜏 to cutoff meshes (that are faraway or span a few pixels) from
the texture streaming process. We use a threshold value 𝜏 = 300
which gives a good balance between the number of textures dis-
played and the texture streaming performance. This threshold value
is proportional to the per-fragment weight contributions listed in
the previous section.

3.4 Texture streaming strategy
Our texture streaming system is designed to maximize streaming
and rendering performance and minimize runtime memory con-
sumption. We propose to stream a regulated number of textures per
batch to keep both the CPU and GPU reasonably busy. Streaming
too small a batch inhibits texture transfer rate and streaming too
large a batch increases texture load-to-display latency, meaning
that newly loaded textures may not be relevant to the current cam-
era view anymore. Another reason to regulate texture streaming is
frame rate stuttering. Although the texture streaming tasks operate
independently from the rendering path, issuing too many sparse
image memory block binding commands will cause long internal
GPU synchronizations that lead to stuttering frame rates. Therefore,
we propose to stream textures in manageable batches controlled by
the batch size exit conditions. These exit conditions estimate the
amount of work the GPU can consume in the current cycle and if
conditions are met, stops texture streaming for the current batch.
GPU commands for this batch are submitted, to allocate and bind
sparse image memory blocks and to transfer mesh textures to the
sparse image. Modern graphics APIs expose transfer queues that
take advantage of direct memory access (DMA) for asynchronous
data transfers without further CPU intervention.

3.5 Loading texture images
The first subsystem in the texture streaming task group is texture
loading, which deals with loading a batch of visible texturemipmaps
into systemmemory (RAM) for transfer to the sparse image (VRAM).
We propose to load textures in parallel. Mipmaps are loaded in order
of descending mesh weights, incrementally, one mipmap level per
batch processing cycle, beginning from the initial mipmap level to
the base mipmap level. We load mipmaps into system memory at
the exact memory offset in the image file to support exponentially
faster texture loading times for smaller mipmaps.

Three texture objects states are defined: Initial,Mipmap, and
the Final state. All texture object state begins at the Initial state
and progresses to the next state at the end of a batch processing
cycle if conditions are met.
• Initial: The Initial state indicates that a texture will be loaded for
the first time. A unique location on the sparse image is assigned
to the texture including all its mipmaps. Then, the initial texture
mipmap (i.e. the 4×4 mipmap level) is transferred to the sparse
image with the underlying memory blocks allocated and bound.
Finally, the mesh metadata used to identify and sample this
texture is generated and stored in a shader storage buffer for
fragment shader access.

• Mipmap: The Mipmap state indicates that the next higher reso-
lution mipmap is to be transferred. Sparse image memory blocks
are allocated and bound for the newly transferred mipmap and
the mesh metadata buffer is updated.

• Final: This state indicates that the base mipmap is loaded or that
the texture is invalidated in the sparse image cache.

3.6 Texture caching in the sparse image
We design an algorithm to cache textures in the sparse image for
scenes with texture atlases of a uniform extent, as well as for scenes
with textures of varying extents. It is a parallel algorithm that uses

High Performance Texture Streaming and Rendering of Large Textured 3D Cities

atomic counters for fast caching performance, and it packs texture
mipmaps semi-compactly to optimize caching space. The main idea
of the algorithm is to pack textures with the same maximum extent
in the same sparse image layer. Each sparse image layer defines a
grid of non-overlapping uniform square regions where each region
stores only one texture. A sparse image layer can only store textures
with the same maximum extent value 𝑣 = max(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡). For
example, a layer designated with 𝑣 = 32 can only store textures with
extent combinations of 32x32, 32x16, 32x8 and 32x4. We require
all scene textures to be in powers of two to limit the number of
possible combinations. Although packing rectangular textures in
square regions wastes caching space, it simplifies implementation
and ensures that mipmaps are all aligned to the same texture coor-
dinate. One may designate more sparse image layers to cache only
rectangular textures, but this will inflate the pool of layers resulting
in overall caching performance loss.

We use a parallel unordered map to keep track of available sparse
image regions for caching new textures. This map defines a key-
value pair {𝑣, (𝑙𝑎𝑦𝑒𝑟, 𝑖𝑛𝑑𝑒𝑥)} for every unique 𝑣 value. The mapped
value (𝑙𝑎𝑦𝑒𝑟, 𝑖𝑛𝑑𝑒𝑥) contains atomic counters describing a sparse
image 𝑙𝑎𝑦𝑒𝑟 and a square region 𝑖𝑛𝑑𝑒𝑥 to cache a new texture with
the associated 𝑣 value key. After caching the new texture, the 𝑖𝑛𝑑𝑒𝑥
counter is incremented so that it points to a new region in a left
to right, top to bottom order. A third atomic counter, 𝑛𝑒𝑥𝑡𝐿𝑎𝑦𝑒𝑟 ,
tracks the next available sparse image layer to store textures. When
a sparse image layer is filled up, the 𝑙𝑎𝑦𝑒𝑟 will point to a new
sparse image layer fetched from the 𝑛𝑒𝑥𝑡𝐿𝑎𝑦𝑒𝑟 counter, and then
the 𝑛𝑒𝑥𝑡𝐿𝑎𝑦𝑒𝑟 counter is incremented.

Since the number of sparse image layers for caching textures is
limited, we reuse the 0th index layer when the last layer is filled up,
just like a ring buffer. Textures in an old index layer are invalidated
and no longer displayed and will need to be reloaded in the future
when required. This ring buffer design guarantees a bounded GPU
memory limit for caching textures which also improves texture
streaming performance.

3.7 Texture streaming exit conditions
The last subsystem in the texture streaming task group controls
the early termination of the streaming process.

• Batch time (fixed) – The task group is terminated when a fixed
amount of batch processing time has elapsed. It defines the in-
terval at which texture streaming commands are generated and
consumed by the GPU. A short time interval gives perceivable
responsiveness of the texture streaming process, ensuring a con-
sistent display of camera relevant textures. A longer time interval
reduces texture streaming overheads, allowing a larger batch of
textures to be streamed, but this increases sparse image mem-
ory binding operations leading to stuttering frame rates. In our
implementation, we use a batch processing time of 0.016s.

• Batch size (adaptive) – The task group is terminated when the
size of loaded texture mipmaps exceeds a batch size threshold. It
effectively limits the number of sparse image memory binding
operations for a batch of work. A small batch size guarantees
low latency and stutter-free rendering but restricts the rate of
texture streaming, while a large batch size increases the rate of
texture streaming at the expense of stuttering frame rates. In our

implementation, we adaptively adjust the batch size based on
estimated GPU load.
To further reduce frame rate stuttering, we introduce an adaptive

mipmap bias parameter to regulate the number of large texture
mipmaps requested for loading. It is designed to maintain visual
coherency of neighboring mesh textures under high GPU load by
giving smaller mipmap texture loading priority. This is managed in
the texture loading subsystem.

3.8 Adaptive batch size and mipmap bias
Our proposed adaptive batch size and adaptive mipmap bias compo-
nents are essential to minimize frame rate stuttering during texture
streaming. The adaptive batch size 𝑆 is derived:

𝑆 = clamp(𝑠 · 𝑓 , 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥) (2)

where 𝑠𝑚𝑖𝑛 ≤ 𝑆 ≤ 𝑠𝑚𝑎𝑥 , 𝑠 is the batch size scale in MB that will
be modulated by the exponential batch size factor 𝑓 , and 𝑠𝑚𝑖𝑛 and
𝑠𝑚𝑎𝑥 is the minimum and maximum batch size in MB respectively.
Since we derive GPU load measurements from texture streaming
operations, we have to define a minimum boundary 𝑠𝑚𝑖𝑛 = 0.01 to
ensure constant texture streaming even under high GPU load. The
maximum boundary 𝑠𝑚𝑎𝑥 = 64 is the maximum texture streaming
performance that we have defined for our system. The batch size
modulation factor 𝑓 is derived:

𝑓 =
1

max((1 + 𝐿𝑓 − 𝑡𝑏)𝛼 , 1)
(3)

where 0 ≤ 𝑓 ≤ 1, 𝐿𝑓 is the GPU load measurement derived from
the sparse image binding time 𝑡 , 𝑡𝑏 is the ideal sparse image binding
time, and 𝛼 is the exponent. The batch size factor ensures that
texture streaming rate is highest when 𝐿𝑓 ≤ 𝑡𝑏 , and exponentially
reduces when 𝐿𝑓 > 𝑡𝑏 . In our implementation, we use a large batch
size scale 𝑠 = 5000 and a maximum batch size 𝑠𝑚𝑎𝑥 = 64MB for
the highest possible texture streaming rate under low GPU load,
and set 𝛼 = 5 to exponentially reduce the texture streaming rate
under heavy GPU load. We set 𝑡𝑏 = 5ms to begin reducing texture
streaming rate before stuttering is noticeable.

The optimal mipmap level is modified by a mipmap bias:

𝑏 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝 (𝑡𝑏 , 𝑡𝑚𝑎𝑥 , 𝐿𝑏) · 𝑏𝑚𝑎𝑥 (4)

where 0 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥 , 𝑡𝑏 is the ideal sparse image binding time,
𝑡𝑚𝑎𝑥 is the maximum sparse image binding time, 𝐿𝑏 is the GPU load
measurement, and 𝑏𝑚𝑎𝑥 is the maximum mipmap bias. This func-
tion introduces no bias when 𝐿𝑏 ≤ 𝑡𝑏 , and introduces an increasing
amount of bias (along a Hermite curve) as 𝐿𝑏 approaches 𝑡𝑚𝑎𝑥 . We
apply the mipmap bias to only allow the next lower mipmap level to
load if 𝑟𝑜𝑢𝑛𝑑 (𝑚𝑜 + 𝑏) < 𝑚, where𝑚𝑜 is the optimal mipmap level
(from the MeshMetaData array), and𝑚 is the currently displayed
mipmap level. In our implementation, we set 𝑡𝑚𝑎𝑥 = 16ms and
𝑏𝑚𝑎𝑥 = 10 to load mostly smaller mipmaps under high GPU load.

Both 𝑓 and 𝑏 have a GPU load estimation measurement, 𝐿𝑓
and 𝐿𝑏 respectively, derived from the sparse image binding time
sampling function:

𝐿 = max
(∑𝑛

𝑖=1 𝐿𝑖 · 𝑟
𝑛

, 𝑡

)
(5)

Alex Zhang, Chen Kan, Henry Johan, and Marius Erdt

The function samples 𝑛 previous sparse image binding time, 𝐿𝑖 · 𝑟 ,
to estimate the GPU load cost 𝐿 when executing future texture
streaming operations. A high 𝐿 value indicates high GPU load, and
a low 𝐿 value indicates low GPU load. When the sparse image
binding time 𝑡 is high, 𝐿 will immediately assume the high 𝑡 value
through the max function, and when 𝑡 is low, 𝐿 will steadily falloff
towards the low 𝑡 value based on the falloff rate 𝑟 . This design
minimizes frame rate stuttering by immediately reducing texture
streaming rate when GPU load is high, and steadily increasing
texture streaming rate when GPU load is consistently low. For 𝐿𝑓 ,
we use 𝑛 = 10 and 𝑟 = 0.87. For 𝐿𝑏 , we use 𝑛 = 30 and 𝑟 = 0.99.
Note that for 𝐿𝑓 , we only integrate those binding time 𝐿𝑖 when
texture streaming has been performed, to reflect a more accurate
GPU load measurement for future streaming operations. For 𝐿𝑏 , we
have to constantly refine mipmaps by integrating all binding time
𝐿𝑖 including times when texture streaming is idle.

4 EVALUATION
We evaluate our texture streaming system in terms of streaming
and rendering performances using three large city datasets (Table 1).
We assess the performance of our system and show how the various
system parameters affect streaming and rendering performance. We
also review the image quality improvements when sampling small
mipmaps using our color blending method and compare our texture
streaming system to the Unity game engine using the Helsinki city
dataset. Our test system is an Intel i7-8700K CPU with a Nvidia
RTX2080 Ti GPU and a Samsung 970 EVO 1TB SSD, on Windows
10, rendering into a 3840×2160 resolution framebuffer.

4.1 Streaming and rendering performance
We evaluate our texture streaming performance with a rapid fly-
through of the Berlin city scene with texture atlases (Figure 1), using
the system parameters shown in Table 2. We record an average
rendering latency of 5.66ms and a peak latency of 15.37ms, with
13708 mipmap transfers per second (56.58MB/s) on average, and
28896 mipmap transfers per second (166.19MB/s) at peak (Figure 3).
We notice that rendering latency tends to spike sharply during
texture streaming, even when we are streaming a small number of
textures (0.05MB) per batch. Therefore, we conclude that sparse
image memory block binding has a system level performance cost.

Our adaptive texture streaming functions are effective in reduc-
ing frame rate stuttering while maintaining a constant average
rendering latency. In the series of benchmarks (Table 3), we analyze
the reductions of frame rate stuttering by adjusting the 𝛼 expo-
nent value of the adaptive batch size function (Equation 3). The
amount of frame rate stuttering is measured as the maximum of the
first-order differences of rendering latency. We notice the decrease
in average mipmap bias when 𝛼 increases, since GPU load is re-
duced overall. This may cause slightly uneven mipmap resolutions
in neighboring meshes which can be remedied by increasing the
average mipmap bias to 1.5. The 𝛼 exponent parameter is system
performance dependent and we recommend setting it to a lower
value to suppress most frame rate stuttering.

Figure 3: Texture streaming benchmark for the Berlin city
with texture atlases. Left to right, top to bottom: Render-
ing latency in milliseconds, number of allocated sparse im-
age memory blocks, mipmaps transferred per second, size
of mipmaps transferred per second. We observe fluctuating
rendering latency when binding sparse image memory, and
fluctuating texture streaming rates when viewing areas of
different building densities. Generally, peak texture trans-
fer rate decreases as more sparse image memory blocks are
allocated.

4.2 Rendering quality
Our texture streaming system is designed to maintain the visual
coherency of mesh textures during their transition from low to
high resolutions. We use the adaptive mipmap bias parameter to
regulate mipmap streaming and maintain evenly distributed texture
resolutions in the current view, at the cost of slightly delaying the
streaming of higher resolution mipmaps. In a rendering view, our
method results in a mipmap resolution spread of only 128 extents,
while the native method results in a mipmap resolution spread of 64
to 512 extents. Without our adaptive mipmap bias feature, adjacent
meshes will have visually incongruentmipmap levels during texture
streaming.

From the rendering captures (Figure 4, right column), we observe
a significant change of color intensity between frame 0 and 1 when
switching from the original mesh colors to the highest mipmap
level of the texture atlases. Using our color blending method, we
managed to retain low frequency, original mesh colors (provided
by our City Colormap) while gradually introducing high frequency
details from the higher resolution mipmaps. It reduces the mean
squared color differences (MSE) between frames, measuring at a
maximum MSE of 26 using our method and a maximum MSE of
124 without, hence, significantly reducing texture pop-in artifacts.

4.3 Robustness: evaluating other datasets
To determine the robustness of our texture streaming system, we
tested two structurally different datasets: the Berlin dataset with
fragmented textures and the Helsinki dataset. We apply the system
parameters from the Berlin (atlas) benchmark to investigate the
sensitivity of our adaptive streaming methods. Texture streaming
appears sluggish as it takes about two seconds to display mipmaps

High Performance Texture Streaming and Rendering of Large Textured 3D Cities

Table 1: Attributes of the three city datasets tested in our system.

Triangles Geometry size (MB) Textures Format Texture size (GB) Texture extent per-axis

Berlin 15,363,486 935 5,712,309 BC1 41.6 4, 8, 16, 32, 64, 128, 256, 512
Berlin (atlases) 15,363,486 1092 233,110 BC1 40.8 512
Helsinki 115,112,748 6096 25,354 BC1 3.5 256, 512

Table 2: Texture streaming systemparameters used in all our
performance benchmarks unless stated so.

Parameters Value Description

𝐹𝑠 2 Anisotropic filtering level
𝜏 300 Mesh weight cutoff threshold

Batch time 0.016s Max processing time per batch

Adaptive batch size (Equation 2)

𝑠 5000MB Batch size scale
𝑠𝑚𝑖𝑛 0.01MB Minimum batch size
𝑠𝑚𝑎𝑥 64MB Maximum batch size

Batch size modulation factor (Equation 3)

𝑡𝑏 5ms Ideal binding time
𝛼 5 Exponent
𝑛 30 Previous binding time samples
𝑟 0.99 Falloff rate

Mipmap bias (Equation 4)

𝑡𝑏 5ms Ideal binding time
𝑡𝑚𝑎𝑥 16ms Maximum binding time
𝑏𝑚𝑎𝑥 10 Maximum mipmap bias
𝑛 10 Previous binding time samples
𝑟 0.87 Falloff rate

until the optimal level. Nonetheless, our adaptive streaming meth-
ods under non-optimal parameters manage to suppress frame rate
stuttering and maintain an even distribution of mipmap levels,
while performing close to the maximum texture streaming rate.

4.4 Limitation
One limitation of our texture streaming method is texture trashing,
where currently visible textures cached in the sparse image are
constantly replaced by newer textures streaming in. This occurs
when there are too few sparse image layers available to cache all
visible textures in the current view, causing the caching algorithm
to invalidate all textures in the previous sparse image layer which
are still visible in the current view. We can resolve this issue by
having enough sparse image layers at the expense of impacted
sparse image memory binding performance and increased memory
pool.

4.5 Comparison with the Unity game engine
Professional GIS software tools are increasingly adopting gaming
technologies to enhance user experiences and workflows [12]. They
leverage game engine’s (e.g. Unity and Unreal) high performance

Table 3: Performance benchmark of the Berlin scene (at-
lases) under various adaptive batch size exponent value 𝛼 .

Median Average Max

𝛼 = 1

Latency (ms) 4.69 5.94 67.06
Transfer rate (Mip/s) 18065 19743 35598
Transfer rate (MB/s) 54.49 55.08 163.89
Batch size (MB) 64 64 64
Mipmap bias 1.42 2.19 10

𝛼 = 5

Latency (ms) 4.88 5.8 21.02
Transfer rate (Mip/s) 18587 19609 35411
Transfer rate (MB/s) 59.27 58.72 163.79
Batch size (MB) 1.36 5.18 64
Mipmap bias 0.78 1.53 8.58

𝛼 = 9

Latency (ms) 4.82 5.19 11.88
Transfer rate (Mip/s) 12675 14190 35174
Transfer rate (MB/s) 38.41 45.99 196.14
Batch size (MB) 0.44 3.99 64
Mipmap bias 0.07 0.46 6.9

and high quality real-time rendering capabilities for analysis and
presentation of geospatial data, especially in virtual reality. For
these reasons, we choose to compare our system’s texture streaming
performance and rendering quality to those of the Unity (2020)
game engine.

Rendering results of the Helsinki scene from a bird’s eye view to
a closeup view show an average rendering latency of 28ms using
the Unity engine compared to our system at 19ms average render-
ing latency. In Unity, mesh textures are initially presented at low
mipmap resolutions with the presence of erroneous mipmap colors.
During texture streaming, these mipmaps are refined directly to the
optimal mipmap level for the current camera view which produces
distinct texture pop-ins. Nonetheless, we did not notice any further
texture pop-ins when zooming in to a closeup camera view unless
when moving at very high speeds. In our system, mesh textures are
initially presented as single colors via the City Colormap, giving the
scene a crude appearance. Mesh textures are subsequently refined
with minimum texture pop-in effects due to our color blending
method. When transitioning to the closeup view, some texture re-
finement is still observable especially when moving the camera at
high speeds.

Alex Zhang, Chen Kan, Henry Johan, and Marius Erdt

Figure 4: Frame captures of the Berlin atlases scene us-
ing our color bending method (left column) vs one with-
out (right column). In the left column, we blend original
mesh colors with the sampled texturemipmaps tominimize
color errors and preserve visual continuity. In the right col-
umn, we directly sample from the texture mipmaps. Frame
0 shows the scene sampled only using the City Colormap.
Frames 1, 2, 3 show progressively texturing using mipmap
resolutions of 4, 8, 16 extents respectively. We show the
mean squared error (MSE) between the current and the pre-
vious frame.

5 CONCLUSION AND FUTUREWORK
Our proposed texture streaming pipeline adopts a multithreaded,
GPU-driven system for high performance texture streaming. It
uses the fragment shader to determine mesh visibility and the
optimal mipmap level for texture streaming. Textures are loaded and
cached into the hardware supported sparse partially-resident image
for sampling, using a batch processing strategy that operates in
parallel with rendering. We have proposed two adaptive streaming
methods: the adaptive batch size, and the adaptive mipmap bias
function, to minimize frame rate stuttering and regulate mipmap
display. Furthermore, we have presented a method to significantly
reduce texture pop-in artifacts by blending in original mesh colors
stored in the City Colormap. We also proposed to generate texture
atlases based on similar orienting normals to vastly improve texture
streaming performance. Our texture streaming system is fast and
produces high quality rendering. It is also robust enough to support

different city datasets without having to accurately tune system
parameters.

As for future work, we like to apply our texture streaming
method to remote rendering, where the server is tasked with texture
selection, encoding, and transfer to the clients for fast decode and
rendering. As compute support is limited in WebGL, we can explore
shader based decoding and software virtual textures to cache mesh
textures on client side.

ACKNOWLEDGMENTS
This research is supported by the National Research Foundation,
Singapore under its International Research Centres in Singapore
Funding Initiative. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not reflect the views of National Research Foundation, Sin-
gapore.

REFERENCES
[1] Berlin Partner for Business and Technology Berlin Senate Department for

Economics, Energy and Public Enterprises. [n.d.]. Berlin 3D. https://www.
businesslocationcenter.de/en/economic-atlas/download-portal/. Accessed: 2019-
10-01.

[2] K Chen. 2015. Adaptive Virtual Texture Rendering in Far Cry 4. In Game Devel-
opers Conference. 869.

[3] David Cline and Parris K Egbert. 1998. Interactive display of very large textures.
IEEE.

[4] Patrick Cozzi and Kevin Ring. 2011. 3D engine design for virtual globes. Crc Press.
[5] Charles Hollemeersch, Bart Pieters, Peter Lambert, and Rik Van de Walle. 2010.

Accelerating virtual texturing using cuda. GPU Pro: advanced rendering techniques
1 (2010), 623–641.

[6] Wumeng Huang and Jing Chen. 2018. A virtual globe-based time-critical adaptive
visualization method for 3D city models. International journal of digital earth 11,
9 (2018), 939–955.

[7] Seokchan Kang and Jiyeong Lee. 2017. Developing a tile-based rendering method
to improve rendering speed of 3d geospatial data with html5 and webgl. Journal
of Sensors 2017 (2017).

[8] Michel Krämer and Ralf Gutbell. 2015. A case study on 3D geospatial applications
in the web using state-of-the-art WebGL frameworks. In Proceedings of the 20th
International Conference on 3D Web Technology. ACM, 189–197.

[9] Sylvain Lefebvre, Jérome Darbon, and Fabrice Neyret. 2004. Unified texture
management for arbitrary meshes. (2004).

[10] Martin Mittring and Crytek. 2008. Advanced virtual texture topics. In ACM
SIGGRAPH 2008 Games. ACM, 23–51.

[11] Joerg H Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar,
Markus Steinberger, and Dieter Schmalstieg. 2018. Shading atlas streaming. In
SIGGRAPH Asia 2018 Technical Papers. ACM, 199.

[12] Pascal Mueller. 2018. High-end 3D Visualization with CityEngine, Unity, and
Unreal. ESRI Developer Summit https://proceedings.esri.com/ library/userconf/
devsummit18/papers/dev-int-142.pdf (2018-03-07) (2018).

[13] Juraj Obert, JMP van Waveren, and Graham Sellers. 2012. Virtual texturing in
software and hardware. In ACM SIGGRAPH 2012 Courses. ACM, 5.

[14] Patric Schmitz, Timothy Blut, Christian Mattes, and Leif Kobbelt. 2020. High-
Fidelity Point-Based Rendering of Large-Scale 3D Scan Datasets. IEEE Computer
Graphics and Applications (2020).

[15] Helsinki Region Infoshare (HRI) service. [n.d.]. Reality mesh of entire Helsinki
(2017). https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli. Accessed:
2019-10-01.

[16] Javier Taibo, Antonio Seoane, and Luis Hernández. 2009. Dynamic virtual textures.
(2009).

[17] Christopher C Tanner, Christopher J Migdal, and Michael T Jones. 1998. The
clipmap: a virtual mipmap. In Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques. ACM, 151–158.

[18] JMP van Waveren. 2012. Software Virtual Textures. (2012).
[19] Mattias Widmark. 2012. Terrain in battlefield 3: A modern, complete and scalable

system. GDC Presentation http://publications.dice.se/attachments/GDC12_Terrain_
in_Battlefield3.pdf (2012-05-31) (2012).

https://www.businesslocationcenter.de/en/economic-atlas/download-portal/
https://www.businesslocationcenter.de/en/economic-atlas/download-portal/
https://proceedings.esri.com/library/userconf/devsummit18/papers/dev-int-142.pdf
https://proceedings.esri.com/library/userconf/devsummit18/papers/dev-int-142.pdf
https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli
http://publications.dice.se/attachments/GDC12_Terrain_in_Battlefield3.pdf
http://publications.dice.se/attachments/GDC12_Terrain_in_Battlefield3.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 City rendering in GIS
	2.2 Virtual texturing systems
	2.3 Hardware virtual texturing

	3 Our Texture Streaming Pipeline
	3.1 Generating atlases and the City Colormap
	3.2 Generating visible mesh metadata
	3.3 Data compaction in the compute shader
	3.4 Texture streaming strategy
	3.5 Loading texture images
	3.6 Texture caching in the sparse image
	3.7 Texture streaming exit conditions
	3.8 Adaptive batch size and mipmap bias

	4 Evaluation
	4.1 Streaming and rendering performance
	4.2 Rendering quality
	4.3 Robustness: evaluating other datasets
	4.4 Limitation
	4.5 Comparison with the Unity game engine

	5 Conclusion and Future Work
	Acknowledgments
	References

