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Abstract—Eye-tracking-based human fatigue detection at 
traffic control centers suffers from an unavoidable problem 
of low-quality eye-tracking data caused by noisy and missing 
gaze points. In this study, the authors conducted pioneering 
work by investigating the effects of data quality on eye-
tracking-based fatigue indicators and by proposing a 
hierarchical-based interpolation approach to extract the eye-
tracking-based fatigue indicators from low-quality eye-
tracking data. This approach adaptively classified the 
missing gaze points and hierarchically interpolated them 
based on the temporal-spatial characteristics of the gaze 
points. In addition, the definitions of applicable fixations and 
saccades for human fatigue detection were proposed. Two 
experiments were conducted to verify the effectiveness and 
efficiency of the method in extracting eye-tracking-based 
fatigue indicators and detecting human fatigue. The results 
indicated that most eye-tracking parameters were 
significantly affected by the quality of the eye-tracking data. 
In addition, the proposed approach could achieve much 
better performance than the classic velocity threshold 
identification algorithm (I-VT) and a state-of-the-art method 
(U’n’Eye) in parsing low-quality eye-tracking data. 
Specifically, the proposed method attained relatively stable 
eye-tracking-based fatigue indicators and reported the 
highest accuracy in human fatigue detection. These results 
are expected to facilitate the application of eye movement-
based human fatigue detection in practice. 

Index Terms—traffic management, eye movement, human 
fatigue, hierarchical-based interpolation 

I. INTRODUCTION 
raffic control centers (TCC) maintain traffic flow and 
safety and decrease its environmental and economic 

impacts. Traffic control is implemented for all modes of 
transport, including vessel traffic service, air traffic 
management, freeway traffic management and rail traffic 
control [1-3]. Traffic control operators (TCOs) in TCCs 
face a high possibility of human fatigue [4], which can 
create disastrous outcomes for public safety [5, 6]. For 
example, in air traffic management, 13% of operational 
errors are directly caused by human fatigue [7]. 

Generally, the risk of human fatigue can be reduced by 
providing real-time fatigue monitoring of TCOs and 
alerting them when fatigue is detected. Previous studies 
have shown that eye movement patterns are effective 
fatigue indicators [8-10], and they can be tracked in an 
unconstrained and natural way. Moreover, eye movement 
patterns reveal patterns of human-system interaction, 
which is a desirable indicator for cognitive states [11]. 

Hence, many pilot studies have been conducted to detect 
human fatigue using eye-tracking data. 

Although existing methods can efficiently analyze eye-
tracking data, applying them in TCCs remains a challenge 
[12]. Due to the natural movements of TCOs when 
working, it is difficult to collect high-quality eye-tracking 
data. In addition, the illumination and reflection of visual 
displays can decrease the performance of eye trackers 
because of excess collected noise [13, 14]. It has been 
found that the quality of eye-tracking data has a severe 
effect on detecting fixations and saccades, which is 
normally the first step of eye-tracking-based human 
fatigue detection [15]. Specifically, the quality of the eye-
tracking data will affect the number and duration of 
fixations, areas of interest and reaction latencies, and 
incomplete eye-tracking data can even lead to artificial 
saccades and fixations [13]. However, existing methods 
mainly use techniques that treat the missing gaze points as 
the end of a fixation or saccade [16], delete the uncertain 
fixations and saccades [13], replace the missing gaze 
points with average data [14, 17], define the fixations 
based on visual similarity [18], or even manually classify 
the fixations [19]. These techniques pay insufficient 
attention to the spatial and temporal characteristics of the 
gaze points, which are the significant features of eye-
tracking data [20]. As a result, they are normally incapable 
of extracting accurate fixations and saccades from eye-
tracking data [13]. 

Considering the above problems, this paper extends the 
concept of hierarchical interpolation to parse the eye-
tracking data at TCCs. Hierarchical interpolation refers to 
decomposing the data into several levels or segments and 
then interpolating each segment separately [21]. 
Following this concept, this paper hierarchically segments 
the eye-tracking data based on the spatial and temporal 
characteristics of the gaze points. The following 
challenges should be addressed when adopting this 
approach: (1) Diverse data quality attributes will induce 
complex effects on the fatigue indicators. In addition, the 
quality of the eye-tracking data is affected by various 
factors (e.g., missing gaze points and noisy gaze points), 
leading to varied results on saccades and fixations. It is 
important and challenging to interpolate eye-tracking data 
by considering every aspect of data quality. (2) The 
dynamic spatial and temporal characteristics of the gaze 
points pose great challenges for interpolation. There are 
strong and dynamic correlations among consecutive gaze 
points. For example, the gaze points of fixation are 
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consecutive and located in a specified area [16]. Although 
these correlations provide guidance and opportunities to 
interpolate the data effectively and accurately, their highly 
dynamic properties are difficult to capture. (3) Eye-
tracking-based fatigue indicators are sensitive to the 
techniques utilized to extract saccades and fixations [22]. 

Considering these challenges, this work proposes a 
method for parsing low-quality eye-tracking data and 
explores the following critical research problems: First, 
what are the eye-tracking-based fatigue indicators? 
Second, how does data quality affect these indicators? 
Furthermore, how can we hierarchically classify the 
missing gaze points considering the spatial and temporal 
characteristics? 

To address these problems, we identified eye-tracking-
based fatigue indicators via an extensive literature review, 
investigated the effects of data quality on these indicators 
and proposed a hierarchical-based interpolation method. 
The algorithm is extended based on a velocity threshold 
identification algorithm (I-VT) but does not use simple 
interpolation. In addition, definitions of applicable 
fixations and saccades for human fatigue detection are 
proposed. Two experiments showed that the innovative 
method can efficiently solve the problem of low-quality 
eye-tracking data. In other words, the proposed method 
can accurately extract the eye-tracking-based fatigue 
indicators from the eye-tracking data. 

The literature on eye-tracking-based human fatigue 
detection and hierarchical interpolation is reviewed in 
Section 2. Section 3 provides a quantitative analysis of 
low-quality eye-tracking data for TCCs. The hierarchical 
eye-tracking data analytics for human fatigue detection at 
TCCs and the extraction of applicable fixations and 
saccades are presented in Section 4 and Section 5, 
respectively. Section 6 presents the experiments that were 
conducted to evaluate the performance of the proposed 
method. Section 7 concludes the paper and highlights 
future works. 

II. LITERATURE REVIEW 
This section provides a theoretical background from 

two aspects: eye-tracking-based human fatigue detection 
and applications of hierarchical interpolation. 

A. Eye-tracking-based Human Fatigue Detection 

Eye movements have been widely recognized as 
promising objective signals of cognitive fatigue [23]. 
Extensive studies have investigated the possibility of 
monitoring mental fatigue via eye-tracking data [12]. 
Basically, researchers first identify the saccades and 
fixations from the eye-tracking data and then generate the 
parameters from them [15], which are called eye-tracking-
based fatigue indicators in this study. These indicators can 
be extracted from the basic saccades, such as saccade 
count [24, 25], saccade peak velocity [26], amplitude and 
saccade duration [27]. Saccade amplitude is the spatial 
length of the saccade. In addition, fixations have been 
found to be important eye-tracking-based fatigue 
indicators, such as fixation stability, fixation count, and 

fixation duration [28]. Fixation stability is the mean 
variation of gaze positions. 

Most of the existing algorithms for identifying saccades 
and fixations can be classified into one of two types: 
dispersion-based threshold algorithms and velocity 
threshold algorithms [14-16, 29, 30]. Dispersion-based 
threshold algorithms mark a set of consecutive points 
within a particular dispersion as a fixation [31]. For 
example, the I-DT, the most common dispersion-based 
algorithm, first determines a temporal window and then 
expands the window until the dispersion of the gaze points 
exceeds the threshold. Its dispersion is calculated based on 
the largest horizontal and vertical distances of the gaze 
points [22]. In other dispersion-based threshold 
algorithms, the dispersion can be measured as the distance 
between any two gaze points of the fixation [16], the 
distances between the points and the center of the fixation, 
and even the maximal horizontal distance plus the 
maximal vertical distance [29]. In addition to 2D fixation 
detection, Weber et al. [15] proposed a dispersion-based 
algorithm with an ellipsoidal bounding volume that 
estimates 3D fixations. 

Velocity threshold algorithms separate the saccades and 
fixations based on velocity [16]. Normally, the velocities 
of fixation points are much lower than the velocities of 
saccadic points. Hence, the velocity of each gaze point is 
compared with a chosen threshold value. If its velocity is 
over the threshold, the gaze point is defined as a saccadic 
point. Otherwise, the gaze point is considered a fixation 
point. Although the velocity threshold algorithm is simple 
and intuitive, it is very sensitive to noise [22]. Liu et al. 
[14] proposed an integrated algorithm that combined the 
dispersion-based threshold algorithm and the velocity 
threshold algorithm to identify fixations in eye-tracking 
experiments. 

In addition to dispersion-based threshold algorithms 
and velocity threshold algorithms, Steil et al. [18] 
proposed a method for fixation detection based on the 
visual similarity of gaze targets. However, this method 
heavily depends on the visual objects and cannot be used 
in monotonous target tracking tasks. In 2018, Bellet et al. 
[32] proposed a state-of-the-art method (U’n’Eye) based 
on a deep neural network to identify events and achieve 
human-level accuracy. 

Considering the significant importance of the temporal-
spatial-static characteristics from eye-movement 
trajectory data, Mukhopadhyay and Nandi [20] proposed 
a comprehensive framework called LPiTrack for eye-
movement pattern discovery. Their study set a new 
direction for identifying eye-movement patterns, although 
they did not focus on fixation and saccade detection. 

In sum, all the mentioned methods pay insufficient 
attention to the quality of raw eye tracking data. Thus, 
their results for the saccade and fixation parameters are 
sensitive to noisy and missing gaze points. Moreover, they 
adopt nonadaptive interpolation without regarding the 
characteristics of the gaze points. To overcome this 
problem, in this study, a hierarchical method is proposed 
to accurately extract the eye-tracking-based fatigue 
indicators from the eye-tracking data. 
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B. Hierarchical-based Data Analysis 

Hierarchical interpolation refers to decomposing data 
into several levels or segments and then interpolating 
these segments separately [33, 34]. This concept has been 
successfully used in many fields, including electronic 
systems and hyperspectral image compression [34, 35]. 

As the characteristics of saccades and fixations are 
significantly different [28], hierarchically parsing them 
would be applicable. In general, the gaze points of fixation 
are consecutive and located in a specified area [18]. The 
gaze points of a saccade follow a Gaussian distribution 
[28]. Hence, researchers have tried to predict the 
trajectories for saccades and fixations separately. Feng et 
al. [36] modeled fixations with stable center points plus a 
zero-mean Gaussian random variable. They modeled 
saccades with linear regression plus a zero-mean Gaussian 
random variable [36]. Wass et al. [31] proposed a fixation 
detection algorithm that combines a number of criteria for 
separately detecting a genuine fixation. Following this 
trend, the authors of this paper propose hierarchically 
interpolating the fixations and saccades. 

III. PROBLEM ANALYSIS 
Eye-tracking data refer to a set of gaze points with 

timestamps, gaze velocities, and gaze positions. This can 
be an alternative measurement of mental fatigue at TCCs. 
Nevertheless, the eye-tracking data of TCOs suffer from 
missing and noisy gaze points. Missing gaze points refer 
to the data points with only timestamps and no gaze 
velocities or positions. Noisy gaze points are data points 
with abnormal gaze velocities or positions. In the 
following, a method for quantitively measuring eye-
tracking data quality is described first. Then, the effects of 
data quality on the eye-tracking fatigue indicators are 
investigated. 

A. Definition of Eye-tracking Data Quality 

Both noisy and missing gaze points will result in low-
quality eye-tracking data, which significantly affects the 
values of the eye-tracking-based fatigue indicators. 
Quantitatively assessing the quality of eye-tracking data 
would provide a foundation for eye-tracking data 
analytics. The definition of eye-tracking data quality is 
thus introduced. Table 1 introduces the parameters and 
indexes that are used in this study. 

A series of eye-tracking data (E) includes a set of 
timestamps, gaze positions, gaze velocities, and validity 
codes. In general, a validity code ranges from 0 to 4. A 
code of ‘0’ indicates that the gaze point is certain and 
labeled as usable gaze data. Codes of ‘1’, ‘2’ and ‘3’ 
indicate that the gaze point is not certain. A code of ‘4’ 
indicates that no eye was identified, and the gaze point is 
missed. Following the definition of Tobii Guidance [37], 
the value derived by dividing the number of usable gaze 
data points by the number of attempts is defined as the 
eye-tracking data quality. 

The quality of the eye-tracking data can be represented 
by {𝑞, 𝑞𝑚, 𝑞𝑛}, where q represents the eye-tracking data 

quality, 𝑞𝑚 refers to the proportion of missing gaze points 
and 𝑞𝑛 indicates the proportion of noisy gaze points. 

Definition 1: Given the eye-tracking data E and the 
quality vector, the quality is defined as follows: 

Class 1: if both the left and right eye-tracking data meet 
the requirements of 𝑞𝑚 + 𝑞𝑛 < 5%  and q>95%, E are 
defined as high-quality eye-tracking data. 

Class 2: if both the left and right eye-tracking data meet 
the requirements of 5% < 𝑞𝑚 + 𝑞𝑛 < 10% and q>95%, 
𝐸 are defined as acceptable eye tracking data. 

Class 3: if both the left and right eye-tracking data meet 
the requirements of 20% > 𝑞𝑚 > 10%, 5% >
𝑞𝑛 and 𝑞 > 80%, 𝐸  are defined as flicker eye-tracking 
data with many missing gaze points. 

Class 4: if both the left and right eye-tracking data meet 
the requirements of 20% > 𝑞𝑛 > 10%, 5% >
𝑞𝑚 and 𝑞 > 80%, 𝐸  are defined as flicker eye-tracking 
data with vague noisy data. 

The definition of eye-tracking data quality is proposed 
to quantitively evaluate the eye-tracking data and provide 
a reference for investigating the effects of eye-tracking 
defects. Instead of using a single quality value, the quality 
vector {𝑞, 𝑞𝑚, 𝑞𝑛}  is introduced to evaluate the eye-
tracking data quality. 

B. Effect Analysis of Eye-tracking Data Quality 

The eye-tracking data from 20 students with normal or 
corrected to normal visual function were collected. The 
average age of these students was 21 years old, and their 
eye movements were recorded when they were monitoring 
vessel traffic conditions and performing a target tracking 
task, which are similar to TCC operations. The task lasted 
for approximately two hours, which was sufficient to 

TABLE I 
NOMENCLATURE 

n Number of gaze points (n=1...,N) 
i Number of gaze points that belong to gaps (i=0,1...,n). 
j Number of gaze points (j=0,1,…,J, J<N-n-1) 
f The sampling rate of the eye tracker. 
𝐸 A series of eye-tracking data. 
q The eye-tracking data quality. 

𝑞𝑚 The proportion of missing gaze points. 
𝑞𝑛 The proportion of noisy gaze points. 
𝐷𝑖 The direction of missing gaze point i. 

𝐺𝑆𝑖 Refers to the gaze step between gaze point i and gaze point 
i+1. 

𝐺𝑆𝑚𝑎𝑥 The maximum gaze step of the saccade. 
𝑇𝑚𝑎𝑥 The timestamp when the gaze step achieves the peak value. 

St The time width at half the maximum gaze step. 
sg Saccade gaze points. 
fg Fixation gaze points. 
ln The label of gaze point n; the value can be sg or fg. 
U The set of gaze points that cannot be interpolated. 
x The x coordinates of gaze points. 
y The x coordinates of gaze points. 
en The gaze point n. 
tn Time stamp of gaze point n. 
ga The gap of eye-tracking data. 
FD Fixation duration. 
FC Fixation counts. 
SD Saccade duration. 
SC Saccade counts. 

SPV Saccade peak velocity. 
SA Saccade amplitude. 
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record their fatigue status [40]. In addition, to obtain the 
ground truth of human fatigue, all the participants were 
required to report their objective fatigue levels using the 
Samn-Perelli scale at the beginning and end of the 
experiment. 

The experiment was approved by an institutional 
review board with the reference number IRB-2018-04-
007. The quality distribution of the eye-tracking data was 
analyzed and showed a serious data quality problem. 

Many eye-tracking datasets have quality values lower than 
80%. Moreover, the quality of the left and right eye data 
was different. Hence, it is necessary to evaluate the data 
quality of the left and right eyes separately. 

Multivariate analysis of variance (MANOVA) was 
conducted to test the effects of data quality on eye-
tracking-based fatigue indicators. For each subject, four 
parts of eye-tracking data belonging to different 
classifications were randomly selected. Some subjects 
may only provide high-class or low-class data. Their data 
were not selected. As a result, 48 parts of eye-tracking data 
from 12 subjects were selected. 

Fig. 1 shows that there was no significant difference 
between Class 2 and Class 1 for almost all indicators 
except fixation duration and saccade peak velocity. Class 
3 had many more fixations and saccades than Class 1 and 
Class 2 (p<0.05). It is surprising that Class 4 had fewer 
fixations than other classes, and this result may be caused 
by the increased missing gaze points and noisy gaze points 
in Class 4. The missing gaze points lead to shorter and 
fewer fixations. The fixation duration and saccade 
duration decreased greatly with the decrease in data 
quality (p<0.001). The noisy gaze points lead to a high 

velocity of gaze points and misidentified saccades. The 
number of saccades increased significantly with a 
decrease in data quality (p<0.001). The saccade amplitude 
in Class 4 was much higher than in other classes (p<0.05). 

The results were obtained by parsing the eye-tracking 
data with the standard velocity-based method. Hence, the 
peak velocity of fixation and mean velocity seemed to be 
stable across the four different data quality groups. 
Comparing the results for Class 3 and Class 4, fewer 

fixations and more saccades were found in Class 4. These 
results were caused by the high velocities induced by the 
noisy gaze points. The authors analyzed the raw data and 
found that almost all the gaze data labeled ‘1’ to ‘3’ had 
high velocities. The noisy gaze points with high velocity 
were regarded as saccadic data. Thus, there were more 
saccades and fewer fixations in Class 4. The pupil 
diameters were not significantly affected by the missing 
gaze points in this study. The missing gaze points did not 
affect the collected data of the pupil diameters, as the eye 
trackers collected enough pupil diameter data per second. 
Nevertheless, the noisy gaze points led to large pupil 
diameters. 

The analysis indicated that when analyzing the eye-
tracking data with the standard velocity-based method, the 
values of the eye-tracking-based fatigue indicators heavily 
depend on the data quality. The missing gaze points and 
noisy gaze points have different effects on these 
indicators. Hence, it can be concluded that noisy and 
missing gaze points are two dimensions of data quality and 
should be separately addressed. According to the results 
in Section 3.2, the traditional methods of parsing the eye-

 

 
Fig. 1. Eye-tracking-based fatigue indicators obtained from four different data quality groups. (a) Fixation count and saccade count. (b) Fixation duration and 
saccade duration. (c) Fixation mean velocity and fixation peak velocity. (d) Saccade mean velocity and saccade peak velocity. (e) Fixation stability. (f) Saccade 
amplitude. 

0

100

200

300

400

500

600

Class 1 Class 2 Class 3 Class 4

N
um

be
r (

co
un

t)

(a)
Fixation count Saccade count

0

100

200

300

400

500

Class 1 Class 2 Class 3 Class 4

D
ur

at
io

n 
(M

ill
is

ec
on

d)

(b)
Fixation duration Saccade duration

0
5

10
15
20
25
30
35

Class 1 Class 2 Class 3 Class 4

ve
lo

ci
ty

 (d
eg

/s
)

(c)

Fixation mean velocity
Fixation peak velocity

0

200

400

600

800

Class 1 Class 2 Class 3 Class 4

ve
lo

ci
ty

 (d
eg

/s
)

(d)

Saccade mean velocity
Saccade peak velocity

0

10

20

30

40

Class 1 Class 2 Class 3 Class 4

Fi
xa

tio
n 

st
ab

ili
ty

 
(p

ix
el

)

(e)
Fixation stability

0
0.5

1
1.5

2
2.5

3
3.5

Class 1 Class 2 Class 3 Class 4
A

m
pl

itu
de

(d
eg

re
e)

(f)
Saccade amplitude



> Hierarchical Interpolation-based Eye-tracking Data Analysis for Human Fatigue Detection< 
 

5 

tracking data will suffer from the problem of data quality. 
Hence, a novel method was proposed. 

IV. HIERARCHICAL INTERPOLATION-BASED DATA 
ANALYSIS 

An innovative method, named hierarchical-based eye-
tracking data analytics (HEA), is proposed to overcome 
these challenges. Fig. 2 illustrates the framework of the 
proposed method. The raw data include timestamps, gaze 
positions, and gaze velocities. The problem of noisy gaze 
points is initially transformed into a problem of missing 
gaze points. The gaze points are classified into three 
types—fixation gaze points, saccade gaze points, and 
missing gaze points—by using existing methods. Then, 
the types of gaps are defined based on their neighboring 
gaze points. Hierarchical interpolation is conducted 
considering the types of gaps. The theories and detailed 
processes are described as follows. 

A. Replacement of the Noisy Gaze Points 

In general, noise in the eye-tracking data includes 
disparities and a great amount of variance caused by light 
reflection or other environmental factors. 

Specifically, given the eye-tracking data, the recorded 
velocity may show great variance due to noise. Hence, the 
median noise reduction algorithm is initially used to 
smooth the raw eye-tracking data. The velocity value of 
the gaze point is replaced by the median value of the 
neighborhood, which is called the mask. 

The gaze points with binocular disparities can be 
identified by comparing the positions of the left and right 
eyes. If the distance between the left and right gaze points 
is larger than the precision of the eye tracker, the gaze 
points are treated as unreliable and replaced with gaps. A 
gaze sample whose peak velocity is faster than 
600°/second should be marked as unreliable and replaced 
with a gap, as the highest saccade peak velocity is not 
above 600°/second [38]. After deleting all the noisy gaze 
points that meet the criteria mentioned above, the 
remaining gaze points from both eyes are merged into one 
dataset. Following the I-VT method, the average position 
data from the left and right eyes are calculated and saved 
for processing. 

B. Adaptive Classification of Missing Gaze Points 

The gaps caused by the missing gaze points may appear 
in fixations and saccades. Since the gaze sample 

distributions of fixation and saccades are significantly 
different [28], the gaps may require different interpolation 
methods. Different from the traditional methods, the 
authors propose adaptively classifying the gaps into 
several types and then interpolating them separately. The 
details of the HEA method are shown in Fig. 2 and 
described as follows: 
1) Gaze point classification 

The gaze points are first classified into fixations and 
saccades. Then, the gaps are classified according to the 
types of their following and preceding gaze points. 

The gaze points can be classified into fixations and 
saccades according to velocity or by visual inspections. 
The ‘velocity threshold’, which is utilized to distinguish 
between fixations and saccades, was set as 30°s-1, which 
is lower than the threshold used by some researchers [31]. 
There are two reasons for the low ‘velocity threshold’ 
utilized in this study. First, this ‘velocity threshold’ is 
sufficient for detecting fixations [37]. In addition, it can 
reduce the possibility of missing small saccades and 
maintain the stability of fixation. The stability of fixation 
is indicated by the variance of the fixation gaze points. 
Increasing the ‘velocity threshold’ will result in merging 
small saccades with fixations. The variance of saccades is 
significantly larger than that of fixations. Hence, the 
combination of small saccades with fixation will result in 
a large variance. The velocity of each gaze sample is 
checked against the ‘velocity threshold’. All the gaze 
samples whose velocities are under the ‘velocity 
threshold’ are marked as fixations. If the velocity of a gaze 
point exceeds the ‘velocity threshold’, the velocities of the 
neighboring gaze points are checked. If more than three 
gaze points have velocities higher than the ‘velocity 
threshold’, these gaze points are marked as saccades. 
Otherwise, the gaze points are marked as fixations. 

Definition 2: Given a gaze point 𝑒𝑛 , its label (l) is 
defined as follows: 

Fixation gaze point (fg): 𝑒𝑛 is a fixation gaze point if 
𝑣𝑛 < 30𝑜/𝑠𝑒𝑐𝑜𝑛𝑑  or {𝑣𝑛−1 𝑜𝑟 𝑣𝑛+1} < 30𝑜/𝑠𝑒𝑐𝑜𝑛𝑑,  or 
defined as fg by experts. 

Saccade gaze point (sg): 𝑒𝑛 is a saccade gaze point if 
{𝑣𝑛−1, 𝑣𝑛 , 𝑣𝑛+1} > 30𝑜/𝑠𝑒𝑐𝑜𝑛𝑑,  or defined as sg by 
experts. Missing gaze point: 𝑒𝑛  is a missing gaze point 
if𝑣𝑛 ∈ ∅. 
2) Gap classification 

A gap indicates a group of consecutive gaze points 
whose velocity is empty. The gaps are classified into four 

 
Fig. 2. The framework of hierarchical eye-tracking data analytics. 

  
Fig. 3. Illustration of a saccade gap, connecting gap, and fixation gap. 
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types: fixation, saccade, connecting, and unrecoverable 
gaps. 

An unrecoverable gap is identified using the ‘max 
interpolation length’, which means the maximum length 
of a gap that should be interpolated. A gap whose 
maximum length is shorter than the ‘max interpolation 
length’ is defined as a recoverable gap. Only the gaps 
caused by tracking problems, such as loss contact and 
reflection, can be interpolated. The gaps caused by 
blinking or looking away from the screen should be treated 
as ‘legitimate’ gaps. It is impossible and unnecessary to 
interpolate the ‘legitimate’ gaps, as no valid gaze points 
are available. The duration of a blink is approximately 
100-400 ms [39]. Thus, the ‘max interpolation length’ 
should be set below 100 ms to avoid interpolating blink 
samples. In addition, the minimum duration of fixation is 
longer than 100 ms [24]. Hence, a ‘max gap length’ of 100 
ms can avoid interpolating a complete fixation. The mean 
duration of a saccade ranges from 20 milliseconds to 200 
milliseconds. Thus, a 100-ms gap may include a saccade. 
To avoid interpolating through a complete saccade, the 
distance of the gap is checked. If both the preceding and 
following gaze points of the gap are fixations, the distance 
between the two gaze points is divided by the number of 
missing gaze points in the gap. If the result is longer than 
30° s-1, the gap is regarded as an unrecoverable gap. In 
addition, the gaps whose lengths are longer than 100 ms 
are treated as unrecoverable gaps and will be deleted later. 
The gaps that fall between two consecutive fixation gaze 
samples are marked as fixation gaps. The recoverable gaps 
that fall between two consecutive saccadic gaze samples 
are marked as saccade gaps. The gaps between fixation 
and saccade are classified as connecting gaps. Fig. 3 
illustrates these gaps, except for the unrecoverable gap. 

Definition 3: For a series of consecutive gaze points 
{𝑒1, … 𝑒𝑛} , a gap exists if {𝑣𝑖 , … , 𝑣𝑖+𝑗} ∈ ∅. If 𝑡𝑖+𝑗+1 −

𝑡𝑖−1 < 100 𝑚𝑠: 
Fixation gap: if {𝑙𝑖−1, 𝑙𝑖+𝑗+1} = 𝑓𝑔  and the distance 

between the two gaze points is smaller than 30 ×
(𝑡𝑖+𝑗+1 − 𝑡𝑖−1). 

Saccade gap: if {𝑙𝑖−1, 𝑙𝑖+𝑗+1} = 𝑠𝑔. 
Connecting gap: if 𝑙𝑖−1 ≠ 𝑙𝑖+𝑗+1. 
Otherwise, it is an unrecoverable gap, U. 

C. Hierarchal Interpolation 

Different interpolating methods are applied to gaps in 
fixations and saccades, as their gaze sample distributions 
are significantly different [28]. The details for 
interpolating the gaps are described as follows: 
1) Interpolating the fixation gaps 

For idea fixation, it is assumed that the gaze points are 
located in the same position. Thus, many researchers have 
utilized the average data to fill the gaps. However, in 
reality, the gaze points vary in an area due to the hardware 
and microdrift or microsaccades. Hence, it is necessary to 
consider the deviation during interpolation. The positions 
of gaze points belonging to the fixation gaps can be 
obtained by summing the mean values of all the 

neighboring fixation gaze points for the gap and the root 
mean square error (RMSE). 
2) Interpolating the saccade gaps 

The recoverable gaps that fall between two consecutive 
saccadic gaze samples are filled in with Gaussian fitting 
and prediction. The gaze steps of the saccades can be 
modeled with a Gaussian distribution [28]. The Gaussian 
distribution parameters for each saccade that requires gap-
filling can be determined by implementing the 
expectation-maximization algorithm. With the Gaussian 
distribution parameters, the gaze steps between any two 
consecutive gaze points can be determined. As the gaze 
points have two dimensions, the direction of each gaze 
step should be determined. The gaze steps of the saccades 
are obtained, and then the Gaussian distribution 
parameters are estimated as follows: 

𝐺𝑆𝑖 = 𝐺𝑆𝑚𝑎𝑥 × 𝑒𝑥𝑝[− (𝑡𝑖 − 𝑇𝑚𝑎𝑥)2 𝑆𝑡⁄ ]  (1) 
where 𝐺𝑆𝑖  refers to the gaze step between gaze point i and 
gaze point i+1. 𝑡𝑖 is the timestamp of gaze point i. 𝐺𝑆𝑚𝑎𝑥 
is the maximum gaze step of the saccade. 𝑇𝑚𝑎𝑥  is the 
timestamp when the gaze step achieves the peak value. St 
refers to the time width at half the maximum gaze step. 
These parameters can be determined by implementing the 
expectation-maximization algorithm. The trajectory of the 
saccade is believed to be smooth. Hence, the moving 
direction (D) is estimated as the average direction of the 
valid gaze point before the gap and the first gaze point 
after the gap. The x- and y- coordinates of the gaze point 
can be determined as follows: 

𝑥𝑖 = 𝑥𝑖−1 + 𝐺𝑆𝑖 × cos(𝐷)  (2) 
𝑦𝑖 = 𝑦𝑖−1 + 𝐺𝑆𝑖 × sin(𝐷)  (3) 

3) Interpolating the connecting gaps 

Interpolating gaps that connect a fixation and a saccade 
is complex, as illustrated in Fig. 5. One of the challenges 
is determining the start or end point of fixation. To address 
this problem, the authors determine the start and end 
points of a saccade first. The Taylor series is applied to fill 
the gap of a saccade. The Gaussian distribution parameters 
and direction can be obtained by Equations (4) and (5), 
and then the x- and y-coordinates can be obtained by the 
results of Equations (2) and (3). 

𝐺𝑆(𝑖 + 1) = ∑ 𝐺𝑆(𝑛)(𝑖) 𝑛! ⁄4
𝑛=0   (4) 

𝐷(𝑖 + 1) = ∑ 𝐷(𝑛)(𝑖) 𝑛!⁄2
𝑛=0   (5) 

If the gaze step is smaller than the threshold, the gaze 
point is regarded as a fixation point. In this way, the end 
and start point of the fixation are confirmed. The same 
method described in Section 4.2.1 can be used to fill the 
gap. 

V. FIXATION AND SACCADE IDENTIFICATION FOR 
HUMAN FATIGUE DETECTION 

Fixations and saccades can be remotely tracked 
unobtrusively and continually during extended cognitive 
tasks using contactless eye trackers. In addition, the 
changes in fixations and saccades can be promptly 
captured to understand the interactions between the users 
and human interface devices. Hence, fixations and 
saccades are the most suitable biosignals for human 
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fatigue detection at a traffic control center. To this end, the 
identification of the fixations and saccades is necessary 
and critical, as this is the starting point for generating the 
eye-tracking-based fatigue indicators. 

Given the eye-tracking data, saccades with a small 
spatial duration, fixations with a short temporal duration 
and incomplete fixations and saccades are eliminated first. 
Specifically, the saccades that are shorter than 2.5 degrees 
are eliminated. The normally used saccades range from 
2.5 to 20 degrees, as an eye tracker with a low sampling 
rate cannot accurately collect small saccades. The 
fixations that are shorter than 100 milliseconds are 
eliminated, as a short fixation cannot provide enough 
information about the cognitive states. In addition, the 
fixations and saccades that are located before and after the 
unrecoverable gaps are eliminated. U refers to the set of 
gaze points that cannot be interpolated. 

Definition 4: Given a series of consecutive gaze points 
{𝑒𝑛 , … 𝑒𝑛+𝑗}, a saccade can be identified if it satisfies (1) 
{𝑙𝑛 , … 𝑙𝑛+𝑗} = 𝑠𝑔 , (2) ∑{𝑣𝑛, … 𝑣𝑛+𝑗} /𝑓 >2.5, (3) 
{𝑒𝑛−1, 𝑒𝑛+𝑗+1} ∉ 𝑈. 

Definition 5: Given a series of consecutive gaze points 
{𝑒𝑛 , … 𝑒𝑛+𝑗}, a fixation can be identified if it satisfies (1) 
{𝑙𝑛 , … 𝑙𝑛+𝑗} = 𝑓𝑔 , (2) 𝑡𝑛+𝑗 − 𝑡𝑛 > 100 𝑚𝑠 , (3) 
{𝑒𝑛−1, 𝑒𝑛+𝑗+1} ∉ 𝑈. 

Based on definitions 4 and 5, saccades and fixations can 
be identified first. Then, the saccade- and fixation-related 
indicators, including fixation duration, fixation count, 
fixation distribution, saccade peak velocity, saccade 
amplitude, and saccade count, are calculated. After that, 
machine learning methods such as decision trees and 
support vector machines can be used to discriminate 
human fatigue based on these fatigue indicators. 

VI. EXPERIMENTS 
The performance of the hierarchical eye-tracking data 

analytics (HEA) is evaluated from two aspects: 1) the 
efficiency in parsing simulated low-quality eye-tracking 
data and 2) the accuracy in detecting human fatigue. The 
HEA was compared with visual inspection and a deep 
neural network method (U’n’Eye [32]) in parsing eye-
tracking data. The datasets and performance are explained 
in subsections A and B. For detecting human fatigue, the 

HEA was compared with the I-VT and Tobii filters. 
Subsections C and D describe the experimental design and 
performance in detecting human fatigue. 

A. Datasets of low-quality eye-tracking data 

Three public datasets from Bellet et al. [32] were used 
to evaluate the performance of the HEA. Dataset 1 was 
collected from humans by an Eyelink 1000 video-based 
eye tracker with a 1000 Hz sampling rate. Dataset 2 was 
collected from monkeys with scleral search coils and a 
1000 Hz sampling rate. Dataset 3 was collected from 
monkeys by an Eyelink 1000 video-based eye tracker with 
a 500 Hz sampling rate. The three datasets contain high-
quality eye-tracking data without missing data. To 
generate low-quality simulation data, the three datasets 
were manipulated via random deletion and adding 
Gaussian noise. First, these raw data were replicated, and 
10% of the data were randomly removed. Second, 
Gaussian noise (ranging from 0 to 17 cm) was added to 
10% of the data. After these two steps, simulation data 
with a data quality of 80% were obtained. Meanwhile, the 
ground truth was set as the indicator extracted from the 
three datasets by visual inspection [32]. The values of 
fatigue indicators generated by the three methods are 
compared using a t-test with a significance level of 0.001. 

B. Performance of Parsing Eye-tracking Data 

Fig. 4 shows the fixation duration distribution of the 
three eye-tracking parsing methods. The HEA shows a 
similar fixation duration distribution with visual 
inspection. The HEA reported fewer short fixations and 
slightly more fixations longer than 300 ms. These results 
may be caused by merging small fixations and saccades. 
The fixation distribution reported by U’n’Eye was 
different from visual inspection and the HEA. It was found 
that for 300 ms fixations, U’n’Eye reported many fewer 
fixations than the other two methods but many more 500-
ms fixations. This demonstrates that the HEA can detect 
fixations and saccades in parsing low-quality eye-tracking 
data. The statistical analysis of six fatigue indicators 
generated from three datasets is presented in Tables 2 to 
4. 

Table 2 shows the parameters of dataset 1. According 
to the t-test results, the HEA shows a significantly smaller 
RMSE than U’n’Eye for the six fatigue indicators, which 

  
Fig. 4. Fixation duration distribution of three eye-tracking parsing methods. 
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means the HEA can provide higher accuracy in extracting 
fatigue indicators from low-quality eye-tracking data. 
Compared with the HEA and visual inspection, U’n’Eye 
obtained longer and fewer fixations from the simulation 
data. These results may be caused by the misclassification 
of missing gaze points. For example, U’n’Eye tends to 
classify the missing gaze points as fixation points that 
result in longer fixation. In addition, the HEA obtained 
fewer fixations than visual inspection. This may be caused 
by the last step of selecting the fixations and saccades, in 
which all the small fixations were eliminated by the HEA. 

For saccade identification, the HEA provided longer 
and more saccades than U’n’Eye. This may be because 1) 
the HEA merged the small saccades into one saccade, 
which makes the saccade duration relatively longer than 

U’n’Eye, and 2) the HEA tends to interpolate missing gaze 
points and thus identifies more saccades than U’n’Eye. 

For dataset 2, all six fatigue indicators generated by 
U’n’Eye were significantly different from the results 
generated by visual inspection. The results revealed the 
negative effects of missing gaze points on the efficiency 
of eye-tracking parsing methods. In addition, the HEA 
achieved better performance than U’n’Eye, by which no 
significant effects were found on fixation duration, 
fixation counts, and saccade peak velocity. Moreover, the 
RMSE of U’n’Eye was significantly larger than that of 
HEA. 

The relationship between saccade peak velocity and 
saccade amplitude is frequently used to detect human 
fatigue [27]. Hence, we investigated the performance of 
the HEA in identifying saccade peak velocity and saccade 
amplitude. From datasets 1 and 2, the HEA could correctly 
identify saccade peak velocity and saccade amplitude. 
However, U’n’Eye could provide lower saccade peak 
velocity and shorter saccade amplitude due to the missing 
gaze points, as shown in Tables 2 and 3. 

For dataset 3, no significant difference was observed in 
the six fatigue indicators and RMSE, as shown in Table 4. 
As dataset 3 only has 53 samples, while the other two 
datasets have 1000 samples, the small sample size should 
be the cause of no significant difference. Considering the 
results of datasets 1 to 3, the fixation counts should not be 

used as fatigue indicators because they depend heavily on 
the parsing method and data quality. In contrast, the 
fixation duration could be a potential fatigue indicator 
when using the HEA. 

Fig. 5 shows the patterns of correctly classified and 
interpolated gaps. Most of the fixation gaps can be 
accurately identified and filled in all three datasets with an 
accuracy above 90%. For saccade gaps, the classification 
accuracy is acceptable at 74.17%, 90.41%, and 77.78% for 
datasets 1 to 3, respectively. Nevertheless, connecting 
gaps were normally misclassified in dataset 1 and dataset 
2, with accuracies of 14.3% and 30.1%, respectively. The 
sample size of dataset 3 is too small, and no connecting 
gap was generated. Hence, no accuracy results of the 
connecting gap were obtained for dataset 3. In conclusion, 
the HEA can deal with fixation gaps but does not perform 
well in interpolating connecting gaps. 

C. Experimental Design of Eye-tracking-based Fatigue 

Detection 

In this section, the performance of human fatigue 
detection using the eye-tracking fatigue indicators 
generated by three methods, the Tobii filter, the HEA, and 

TABLE Ⅲ 
DATASET 2 PARAMETERS GENERATED BY THREE METHODS 

Method FD FC SD SC SPV SA 
VI 350.4 3.2 34.8 2.2 80.8 11.8 
HEA 354.0 3.1 34.3* 2.2* 80.8 11.7 
U’n’Eye 358.8* 3.3* 28.9* 2.3* 78.4* 10.1* 
HEA_RMSE 22.9 0.2 2.8 0.2 0.1 0.1 
U_RMSE 114.3 0.9 9.3 0.9 1.4 0.3 
p 0.00 0.00 0.00 0.00 0.05 0.0 

Note: VI: visual inspection, HEA: the proposed method, U’n’Eye: a 
deep neural network, HEA_RMSE: the root mean squared error between 
HEA and VI, U_RMSE: the root mean squared error between DNN and 
VI, FD: mean fixation duration, FC: fixation counts, SD: saccade duration, 
SC: saccade counts, SPV: saccade peak velocity, SA: saccade amplitude. 
p: the t-test results between HEA_RMSE and U_RMSE. *: the significant 
difference between the observed value and target value at level 0.001. 

TABLE Ⅱ 
DATASET 1 PARAMETERS GENERATED BY THREE METHODS 

Method FD FC SD SC SPV SA 
VI 352.9 2.9 42.9 1.9 128.1 16.5 
HEA 357.6* 2.9 43.0 1.9 127.5 16.5 
U’n’Eye 373.7* 2.8* 36.4* 1.8* 199.5 16.3 
HEA_RMSE 42.3 0.3 4.5 0.3 1.8 0.2 
U_RMSE 92.6 0.6 11.5 0.6 113.2 0.8 
p 0.0 0.0 0.0 0.00 0.05 0.00 

Note: VI: visual inspection, HEA: the proposed method, U’n’Eye: a 
deep neural network, HEA_RMSE: the root mean squared error between 
HEA and VI, U_RMSE: the root mean squared error between U’n’Eye and 
VI, FD: mean fixation duration, FC: fixation counts, SD: saccade duration, 
SC: saccade counts, SPV: saccade peak velocity, SA: saccade amplitude. 
p: the t-test results between HEA_RMSE and U_RMSE. *: the significant 
difference between the observed value and target value at level 0.001. 

  
Fig. 5. Accuracy of gap classification. 
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TABLE Ⅳ 
DATASET 3 PARAMETERS GENERATED BY THREE METHODS 

Method FD FC SD SC SPV SA 
VI 217.3 3.7 11.1 2.6 128.9 5.0 
HEA 216.5 3.7 10.9 2.6 129.4 4.9 
U’n’Eye 220.3 3.6 11.1 2.6 128.7 5.0 
HEA_RMSE 10.2 0.2 0.5 0.2 0.3 0.03 
U_RMSE 22.2 0.3 0.9 0.3 0.6 0.03 
p 0.18 0.18 0.30 0.18 0.32 0.88 

Note: VI: visual inspection, HEA: the proposed method, U’n’Eye: deep 
neural network, HEA_RMSE: the root mean squared error between HEA 
and VI, U_RMSE: the root mean squared error between U’n’Eye and VI, 
FD: mean fixation duration, FC: fixation counts, SD: saccade duration, SC: 
saccade counts, SPV: saccade peak velocity, SA: saccade amplitude. p: the 
t-test results between HEA_RMSE and U_RMSE. *: the significant 
difference between the observed value and target value at level 0.001. 
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the standard I-VT, was investigated. The process of 
human fatigue detection is as follows. Tobii X3-120 sent 
the raw eye-tracking data to a ThinkPad X1 with 
MATLAB 2017, which was used to parse the raw eye-
tracking data and detect human fatigue [12]. Specifically, 
the first and last five minutes of the eye-tracking data of 
20 participants were parsed by the three methods and 
labeled with alert and fatigue, respectively. A support 
vector machine (SVM) was used to build the models and 
the associated eye-tracking-based fatigue indicators with 
fatigue labels. The accuracies of the SVM models were 
compared and tested by repeated measures analysis of 
variance (ANOVA). 

D. The Performance of Human Fatigue Detection 

Table 5 shows the performance of the SVM models 
using the eye-tracking fatigue indicators generated by the 
four methods. SVM is the most widely used machine 
learning method for eye-movement-based human fatigue 
detection [12, 40]. In previous studies, SVM was reported 
to be a suitable method for eye-tracking-based fatigue 
detection and achieved an accuracy of approximately 70% 
[41, 42]. 

Repeated measures ANOVA was conducted to test the 
within-in-subject effects. Significant effects were 
observed with F(2,57) = 21.35 and p = 0.00<0.05. The HEA 

achieved the highest accuracy of 84.6% and the lowest 
standard error of 3.19. In conclusion, the HEA 
significantly improved the performance of using eye-
tracking data to detect human fatigue. 

E. Discussion 

According to the above results, several implications can 
be concluded as follows. 

First, the HEA can accurately elicit fatigue indicators, 
including saccade peak velocity, saccade amplitude, and 
fixation duration from low-quality eye-tracking data. 

Second, compared with the standard I-VT method and 
U’n’Eye, the proposed method performs better in parsing 
low-quality eye-tracking data. It can reduce artificial 
events by merging the short gaze samples or eliminating 
the unreliable gaze samples. 

Third, the HEA can retain the most valid data and obtain 
almost the same distributions of fixations and saccades 
from the simulation data and the original data. Compared 
with traditional methods, more valid data can be retained 
by the HEA. 

Finally, the eye-tracking fatigue indicators generated by 
the HEA achieve the best performance in human fatigue 
detection. 

Nevertheless, there are also some limitations in real 
applications. On the one hand, the proposed method can 
well interpolate the eye-tracking data with data quality 

above 80%, and the performance decreases when the data 
quality is lower than 80%. On the other hand, although the 
proposed method provides effective eye-tracking-based 
indicators for human fatigue detection, it should be noted 
that simply using eye-tracking-based indicators cannot 
fully reveal all aspects of human fatigue states. Integrating 
these indicators with data for other indicators, such as 
working conditions, sleep time, brain dynamics, and heart 
rate, would greatly improve the performance of human 
fatigue detection [43]. 

VII. CONCLUSION 
Researchers have paid limited attention to eye-tracking-

based human fatigue detection for TCOs, whose eye-
tracking data always suffer from the problem of missing 
and noisy gaze points. To solve this problem, this work 
proposed a hierarchical eye-tracking data analysis 
method. Two experiments were conducted to compare its 
performance with the I-VT and a novel method, U’n’Eye. 

This study extends the research on human fatigue 
management for TCCs in several dimensions. First, this 
innovative approach is superior to existing methods for 
attaining eye-tracking fatigue indicators. This approach 
facilitates discriminating human fatigue using low-quality 
eye-tracking data and can be extended to generate the 
parameters for other fields, such as workload and attention 
evaluation. Second, this is pioneering work that 
investigates the negative effects of missing and noisy gaze 
points on eye-tracking-based fatigue indicators. This 
investigation provides references for discriminating 
human fatigue using eye movement. In addition, this 
research indicates the necessity for considering data 
quality in eye movement-based studies. 

In the future, this work can be improved and extended 
from the following aspects. First, a study on accurately 
measuring microsaccade parameters using an eye tracker 
with a low-frequency sampling rate can be conducted. 
Moreover, the performance in detecting saccade gaps and 
connecting gaps can be improved. In addition, 
experiments with real traffic control operators at typical 
TCCs should be conducted to facilitate its adoption in 
practice. 
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