
Generation of 3D Building Models from Archived City Area Maps by
Fusing Information from Multiple Sources

Chaoqun Dong1,∗ · Roman Martel1,∗ · Kan Chen1 · Henry Johan2 · Marius Erdt1,2

Abstract This paper proposes a pipeline for the automatic
generation of 3D building models for city areas based on
information from archived city area maps. These maps are
typically created and archived by city authorities for sev-
eral decades. As such, they exhibit several challenging prop-
erties like a mixture of handwritings and typewriter font
styles, varying layouts and notation standards, low contrast
and physical damages. To tackle these challenges, we pro-
pose to extract and fuse information from multiple sources.
In the proposed pipeline, we firstly locate and extract text
content within the city area maps to obtain the essential in-
formation to identify described buildings. Secondly, based
on this information, we retrieve the building height informa-
tion and addresses from a public housing database. Then, we
extract the building shape and size information on the basis
of the obtained addresses through an online map API. Lastly,
utilizing all the acquired building information, we generate
3D models of the buildings and their neighborhoods in the
CityGML LOD1 format. The whole pipeline and its indi-
vidual components are tested on a dataset of city area maps
provided by city authorities.

Keywords Computer Vision · 3D Building Models ·
Archived City Area Maps · Text Recognition · Deep
Learning

1 Introduction

In the past, city planning using hand drawings and typewrit-
ers was the common practice. City authorities can, therefore,
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provide plenty of archived non-digital maps and documents.
These documents contain detailed information about many
older city areas and their historical development.Making this
information available to modern 3D modeling and simula-
tion tools used by city authorities nowadays is a challenging
task. The documents are often archived over decades, which
can lead to damages and low contrast. Scanning of the docu-
ments may introduce additional artifacts. Furthermore, over
the years, the standard formats, typewriter fonts and hand-
writings in the documents change.
In this paper, we address these challenges by proposing a
pipeline which leverages the resource of archived city area
documents. It extracts building information from the city
area documents and fuses it with other data sources to gen-
erate a 3D model of the city area. The main features of the
proposed pipeline are as follows:

• We apply a deep learning based method to locate and
extract information from city area documents to identify
target buildings.
• Based on this information, we find the target buildings in
other databases from which the building shape, size and
height information is extracted.
• Based on the obtained building heights and shapes, after
coordinate system conversion, we can generate a list of
3D models for all target buildings, which have correct
aspect ratios and relative locations.

There are many applications and use cases which benefit
from 3D models of city areas like urban planning, visualiza-
tion, traffic and wind simulations, estimation of population,
energy demand or solar irradiation and many more. A struc-
tured overview of use cases can be found in [6]. For many of
these use cases a low accuracy estimate of building models
is already sufficient. We, therefore, use the CityGML repre-
sentation [16] with level of detail one (LOD1) to store the
output models. LOD1 is used for simple building models
with no details as shown in Figure 17.
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To get access to authentic data, we collaborate with city au-
thorities in Singapore. They provided us with a dataset of
archived city area documents in the form of maps for sev-
eral areas in Singapore. A representative example for such
a map can be seen in Figure 2a. They mostly contain a de-
tailed map area with streets and building outlines. A smaller
overview map in a box at one of the corners shows the area
in a larger context. Several text boxes, distributed around the
map, provide various additional information for a couple of
the buildings identified by a block number. The city area it-
self is identified by a city area name located in one of the text
boxes. There is a large variation of general layout, handwrit-
ings and typewriters fonts. The drawings displaying building
shapes are in many cases degraded over time and often show
ambiguities among lines for representing building shapes
and lines for measurement or description. As a result, the
city area maps contain unreliable and limited building shape
information. These challenges make the dataset a good can-
didate to demonstrate the general applicability of the pipeline
in a real-world scenario.
In summary, themain contribution of this paper is tomake the
vast amount of information stored in documents archived by
city authorities accessible for modern 3D modeling and sim-
ulation tools. To achieve this, we propose a pipeline which is
able to deal with the challenges of such archived documents
by fusing them with additional data sources. We further test
the pipeline on a real dataset of city area maps and report the
results for the whole pipeline and its components.
This paper is structured as follows. Section 2 summarizes
related work. Sections 3, 4, 5, 6, 7, 8 and 9 describe the
proposed pipeline. Our results are summarized in Section 10
and subsequently discussed in Section 11. Finally, Section
12 concludes the paper.

2 Related Work

2.1 Single Building 3D Model Reconstruction

Several approaches have been developed for the reconstruc-
tion of single buildingmodels. Approaches based on scanned
2Dfloor plans are summarized in [13]. [11] gives an overview
focusing on detailed building models based on photo and
laser scanning data. In [1], a pipeline for the analysis of floor
plans using classical image analysis is proposed. The inputs
are high quality floor plans of single buildings which contain
a standardized set of text labels, drawings and symbols indi-
cating doors, walls, windows and other entities. Using these
standards, the task is separated into smaller steps such as
separation of text and graphics, wall detection and automatic
detection of rooms. A similar approach was not applicable to
our dataset of city area maps because of the lack of standards
and the lower quality. For example, the text recognition in
[1] worked well because a single digital font was used across

the whole dataset. Our dataset contains a mixture of several
typewriter and handwritten fonts which are partly damaged
due to large storage and scanning artifacts. Several papers
focus only on a single step of the above mentioned pipeline
using the same or similar datasets. Segmenting text elements
from graphics in floor plans is described in [3] and [29].
Automatic wall detection is the topic in [8] and [2]. [22]
deals with the automatic detection of rooms in floor plans.
A similar approach as in [1] to automatically generate a 3D
model from scanned 2D floor plans is described in [14]. In
[12], 3D building models are generated based on 2D floor
plans in computer-aided design (CAD) format.

2.2 City Area 3D Model Reconstruction

The final target of this paper is the generation of 3D building
models for whole city areas. A variety of approaches have
been developed to address this task. A dataset of 2D digital
maps manually annotated with polygons is used in [28] to
automatically generate 3D building models. The resulting
models have a higher level of detail than in our approach,
however, the dependance on manual polygon annotations
limits its applicability. Stereo pairs of satellite images are
used in [9] to reconstruct 3D building models on a city scale.
In [5], a dataset of already prepared building footprints is
utilized to deduce the shape of buildings. To obtain an accu-
rate and robust estimate of the building heights, additional
information about the buildings and statistical data of their
local neighborhood is used. Airborne and terrestrial LiDAR
data is combined with aerial photographs in [30] to automat-
ically generate 3D building models for a whole city area. The
acquisition of the necessary data for this approach on a city
scale is, however, costly in terms of time, effort and money.
In [23], the outlines of a pipeline based on the same city area
maps as ours is proposed. Compared to our current approach,
there are several important differences. Themethod for initial
map segmentation based on calculating image statistics was
replacedwith amore robust one using a rank filter andHough
transform (see Section 4). For the text detection, the previous
method based on extremal regions was replaced with a CNN
approach (Section 5). As [23] describes only an outline of a
pipeline, no solution for the text recognition and information
extraction is provided. These steps are added in the current
pipeline (Sections 6 and 7). In the shape extraction part, im-
age tilling and text removal were added to handle the cases
in which the target building is large or contains text overlap-
pings at the building boundaries (Section 8). In addition, a
new method to generate 3D building models in a large area
with correct aspect ratios and relative locations is proposed
(Section 9). Furthermore, in [23] no experimental results are
presented and discussed because the paper only proposed the
outline of a pipeline without a complete implementation.
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Fig. 1 Overview of the proposed pipeline. All input sources are shown in orange on the top. Every step of the pipeline is
displayed in green. The output data appear on the bottom in blue

In [15] and [25], further approaches are described which
make use of data from the OpenStreetMap project [17]. The
data from the OpenStreetMap project can be very well com-
bined with our approach, making it applicable to many re-
gions for which this data is present. In our concrete test ex-
ample of city area maps in Singapore, we used data from the
new OneMap API [24]. That is because the new OneMap
API is the official reference data source for building loca-
tions and shapes in Singapore while OpenStreetMap relies
on crowdsourced data.
In [4], improvements to the CityGML standard itself [16] are
proposed which is used to store the resulting 3D models of
our pipeline.

3 Overview of the Proposed Pipeline

Given a document describing a city area, we propose to find
a set of buildings in the document and combine several data
sources to identify them and generate their 3D building mod-
els in the CityGML LOD1 representation. This idea could
work with various kinds of documents. The main require-
ment is that they contain the location information in text for
all buildings which should be generated. This location in-
formation could be the building address, the geographical
location in longitude and latitude or a building identifier for
which the address can be determined in a separate database.
Assuming the building location has been found, several other
data sources can be used to obtain the necessary information
to generate a 3D model for the building. For instance, the
OpenStreetMap project [17] maintains an API which pro-
vides the building shape and size information for a given
building address. Furthermore, some governments maintain
housing databases or online map APIs for which building
shape and size can be extracted.

As a case study to demonstrate the feasibility of this
idea, we propose a concrete pipeline which takes real city
area maps archived by city authorities in Singapore as input
documents. The overview of this pipeline is illustrated in

Figure 1. The inputs are scanned versions of city area maps
(see Figure 2a). A city area map describes the surrounding
area for a few target buildings. These buildings are listed in a
table somewhere in the map using building block numbers to
identify them (see e.g. Figure 3 left). Furthermore, the name
of the city area is mentioned in another location in the map
(see e.g. Figure 3 right). Combined, the city area name and
block number serves as an identifier for a building. The city
authorities in Singapore maintain a public housing database1
which contains the address and further information like num-
ber of storeys for each building identifier. Using the addresses
from the database, we could use the OpenStreetMap project
[17] to get the building shape and size information. On one
side this approach would work in general for most regions
worldwide, on the other side we would rely on crowdsourced
data which is not guaranteed to be accurate. In case of Sin-
gapore, the city authorities also provide an online map API
(OneMap API [24]) which can be used for the same pur-
pose. This API serves as the official reference for building
shapes and locations in Singapore. For this case study, we
therefore use the OneMap API to locate the buildings and get
images of their footprints. With shape and size information
extracted from the footprints and height information com-
puted from the housing database, 3D building models can be
generated in the CityGML LOD1 format. Our approach in
total is divided into six steps.

1. Map Segmentation: segment the city area map into its
main parts and filter out the irrelevant ones (Section 4).

2. Text Detection: detect all text elements in the relevant
parts (Section 5).

3. Text Recognition: recognize all detected text elements
and classify them to be relevant or not (Section 6).

4. Building Address and Height Extraction: find the build-
ing block number and city area name of the target build-
ings amongst the recognized text and identify the build-

1 https://data.gov.sg/dataset/
hdb-property-information

https://data.gov.sg/dataset/hdb-property-information
https://data.gov.sg/dataset/hdb-property-information
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(a) Input city area map before any processing

(b) City area map after segmentation. Irrelevant segments are marked
with gray boxes while relevant ones are blue

Fig. 2 Example for a city area map segmentation result.
The segments mainly align with the separating lines of the
original map boxes/segments

ing in the public housing database to obtain the address
and height (Section 7).

5. Building Shape and Size Extraction: find the footprints
images of the identified buildings using the OneMap API
and extract their shape and size (Section 8).

6. 3D Model Generation: generate 3D building models
by combining the previously gathered building height
and shape information and converting to the appropriate
coordinate systems (Section 9).

Besides the city area maps, we are also provided with
several additional documents showing detailed building floor
plans and building height profiles. This additional data is not
processed by the pipeline directly, however, it is used to get
training data for the text detection in Section 5 and to derive
the building height formula in Section 7.3.

4 City Area Map Segmentation

We segment the input city area map into smaller parts along-
side the boundaries of the map areas and text boxes. In this
step, we make an assumption that these boundaries are in-
dicated by separating lines, which are fairly horizontal or
vertical (see e.g., Figure 2a). The provided maps have a high
resolution, which is usually around 13200×9600 pixels. This
level of detail is not necessary for a rough segmentation of
the main areas and would slow down most algorithms. Fur-
thermore, we want to use the same parameter in the x and y
directions for the following steps. We therefore first reduce
the input city area image to a square resolution of 500 × 500
pixels.

Afterwards, adaptive thresholding is used to transform
the grayscale image to a binary one. A rank filter [27] with
long horizontal and vertical lines as kernel is applied to the
binary image. This results in an image containing mainly
the separating horizonal and vertical lines of the map seg-
ments plus some unwanted remnants from other structures.
To obtain a parameterized form of the remaining lines (e.g.
slope and y-intercept), a classical Hough transform [10] is
applied to this image. Because the separating lines of interest
are either horizontal or vertical, we now filter out all lines
which deviate more than 5 degree from being horizontal or
vertical. The remaining lines are mapped to the closest hori-
zontal or vertical line. After that, all lines are described only
by their position on the x axis (for vertical lines) or y axis
(for horizontal lines). We go through the image from top left
to bottom right combining the lines to rectangular boxes. A
set of four lines will be combined to a rectangular box if
each line covers more than 50% of a corresponding side of
the box. The image boundaries are thereby considered as full
lines. Therefore, if no lines are detected by Hough transform,
the algorithm will simply return a single segment containing
the whole image.

The resulting segments with extreme aspect ratios, nearly
empty or completely filled content and covering a large part
of the image (usually map area) are filtered out. The result
of this method applied on a typical city area map is shown in
Figure 2b. The segments which are filtered out are shown in
gray while the remaining segments after filtering are high-
lighted in blue. The remaining segments are the output of
this step of the pipeline.

5 Text Detection

The aim of this step is to find all text elements in the original
city areamaps. There are publicly availableOCRengines like
Tesseract [26] or OCRopus [7] to solve this task. These en-
gines provide many convenience functions such as grouping
detected words to lines or blocks and choosing languages for
the recognition. However, in our case, they proved to be not
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Fig. 3 Example results for the text detection using the EAST text detector [31] with a model pre-trained on ICDAR 2013 and
ICDAR 2015 and fine-tuned on our own dataset of city area map segments. The detected text boxes are marked in blue

applicable because of the poor quality of the maps and the
challenging mixture of hand-written and typewriter fonts.
Our choice fell therefore on the EAST text detector [31]
which is reported to be fast and robust to noise and variation
of fonts.

Our solution builds on an existing implementation with
a trained model2. This model is pre-trained on the train-
ing sets of the ICDAR 2013 and ICDAR 2015 competitions
[20], [19]. These datasets are very different from our city area
maps. They contain color images of random scenes taken by
a Google Glass in a city area. Therefore, we fine tune the
model on a training dataset collected from other city area
documents. These documents are different from the original
city area maps but were provided by the same city authori-
ties and therefore exhibit a similar layout and style of fonts.
The training dataset consists of 104 segments, for which we
manually labeled the bounding box of each text element. The
104 segments were determined by applying the method from
Section 4 to the other city area documents. Fine tuning is
performed for 50K steps using a batch size of 12 images
per step and random data augmentation operations such as
cropping, resizing and slight rotations. Loss functions, opti-
mization protocol and regularization are the same as in [31].
Examples for the detection results using the final fine-tuned
model can be seen in Figure 3.

6 Text Recognition

In this step, we have the detected text boxes from the pre-
vious step as input and have to recognize their text content.
However, we are only interested in a small part of the total
text content, namely the city area name and the block num-
bers of the target buildings. It is therefore not necessary to

2 https://github.com/argman/EAST

recognize all text elements but only a predefined subset. In
[18], the text recognition task is treated as a classification
problem, where each class represents a possible word and
the total amount of words is fixed and given by a large dic-
tionary. In the case of [18], this dictionary can contain up
to 90K words. We, however, need to classify only a much
smaller set of about 3K words, which makes the training
faster and requires less training data. Besides that, the ap-
proach in [18] expects the same input data as ours, text boxes
cropped around single words. Furthermore, [18] proposes to
train the model on synthetic data and reports to have robust
results using this approach. For these reasons we decided to
follow the approach in [18] for the text recognition step.

The model in [18] is based on a CNN for feature ex-
traction and a classifier using two fully-connected layers. We
provided our own implementation of the model based on the
original paper. Due to our lack of labeled training data for
text recognition, we also adopt the idea of training on syn-
thetic data as presented in [18]. The details of the creation
for the synthetic dataset are described in paragraph Synthetic
Dataset.

For the word class dictionary, we decided to add classes
from four categories:
1. City Area: we compiled a list of all possible words oc-

curring in all areas of the city.
2. City Area Keyword: keywords indicating the position

of city area name in the city area maps.
3. Building Block Number: a list of all numbers which are

allowed to be used for building blocks.
4. Building Block Number Keyword: keywords indicating

the positions of the list of building block numbers in the
city area maps.
All words which do not belong to any of these categories

will be considered as irrelevant. Example classes for the
categories can be seen in Figure 5. Combining all classes

https://github.com/argman/EAST
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Fig. 4 Example results for the text recognition using the approach described in [18]. The model is trained from scratch for 10
epochs on a specifically created synthetic data set.
Color coding of the text boxes: light green: city area names, dark green: city area name keywords, light blue: building block
numbers, dark blue: building block number keywords, gray: irrelevant

and one class for irrelevant words (residual class), we end up
with a dictionary containing 3182 classes. The recognition
model is trained from scratch on our own synthetic training
dataset. We train for 10 epochs and follow the procedure
in [18] regarding loss function, optimization, regularization
and choice of batch size. Examples for the results when
applying the trained recognition model on the detected text
boxes (Figure 3) from the previous step can be seen in Figure
4.

Synthetic Dataset We cannot use the same dataset as in [18]
because our objective is different. Instead of recognizing
words in colored random scene images, we try to recognize
words in grayscale city areamaps. The challenge is hereby the
robust recognition of words typed with different typewriter
fonts or written with different hand writings.

We, therefore, gathered 10 different publicly available
hand writing font sets and 17 different typewriter fonts. For
each word, we randomly sample the font, font size, padding
or cropping amount, rotation in the range -4 to 4 degree
and whether salt-and-pepper noise should be added to the
word image. In this fashion, we generate 100 word image
samples for each of the 3181 target word classes (residual
class excluded). The residual class represents a potentially
large number of words and appearsmore often in the city area
maps than the other classes. Therefore, we set the number
of residual class samples to be 20% of the total amount of
the other word class samples. The sampling process for the
residual class is identical to the other classes except that we
also have to randomly sample one of the potential words it
can represent. These potential words are chosen from a pool
of words collected from the city area maps, which do not
belong to any of the four categories mentioned in Section 6.
To account for possible empty detections in the previous step,

(a) Class: "Woodlands",
Category: City Area

(b) Class: "Geylang",
Category: City Area

(c) Class: "Contract",
Category: City Area Keyword

(d) Class: "688E",
Category: Building Block
Number

(e) Class: "210C",
Category: Building Block
Number

(f) Class: "BLK.",
Category: Building Block
Number Keyword

(g) Class: "-",
Category: irrelevant

(h) Class: "-",
Category: irrelevant

Fig. 5 Example images of the synthetic dataset with class
name and category

we also set 1% of the residual class images to be empty with
random noise only added. This leads in total to a training
and test dataset containing 381840 samples. 10 % of the
samples are chosen to be the test set, and are therefore used
only for evaluating the final text recognition performance
after training. Figure 5 displays a couple of samples from the
synthetic data set.
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(a) Example for the voting mechanism to find the position of the city area name

(b) Example for the voting mechanism to find the position of the building block numbers

Fig. 6 Each keyword votes for a box to indicate the location of the target information. The boxes for the city area name are
displayed in green, the ones for the building block numbers in blue. The color becomes more opaque with increasing votes
in a region. The red rectangles show the regions containing the target information. These regions are displayed in Figures 3
and 4. One can see that they correspond to the regions with most votes as indicated by the most opaque colors

7 Building Address and Height Extraction

7.1 Keyword Voting Mechanism

The input in this step is the list of all words with their posi-
tions in the city area map, which have not been classified as
irrelevant. All these words have a label attached identifying

the class and category. The target words have the category
"City Area" or "Building Block Number". Typically many
instances of these categories are found across the whole city
area map. However, the city area maps follow some stan-
dards. The city area name and block number list are accom-
panied by a couple of keywords. For example, in Figure 3
on the right, the city area "JURONG EAST" is surrounded
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by the keywords "JOB", "TITLE", "NEIGHBOURHOOD"
and "CONTRACT". These keywords are the same across the
whole dataset. We therefore identified and included them in
the training data set in the previous Section 6. For each key-
word, we also know whether it should appear above, below,
left or right of the target information. To find the position of
the target words, we therefore propose a voting mechanism
in which each keyword votes for a box containing the tar-
get word. For example, in Figure 3 on the right, the keyword
"NEIGHBOURHOOD" will vote for a box above its location
to contain the city area "JURONG EAST". The sizes of the
boxes are chosen to be generous to allow for some variation
of the concrete relative position of keyword to target word
in each map. The voting for the "City Area" and "Building
Block Number" categories are done separately. Figure 6a
demonstrates an example result for the city area voting. The
corresponding result for the building block number is shown
in Figure 6b.

7.2 Building Address Extraction

After voting, the proposed regions are processed starting
with the region with the most votes. An example vote region
for the city area is shown in Figure 4 on the right. We start
by listing all words with label category "City Area" inside
the vote region. In the example in Figure 4 on the right, these
are "JURONG" and "EAST". These words are processed
line by line from top left to bottom right. The first word is
compared to the list of all possible city area names. If it
uniquely matches a single city area name, then this one is
chosen. Otherwise the next word is also taken into account.
This is repeated until we reach a unique match. In case no
match has been found, the region is discarded and the process
is repeated for the region with the next highest number.

For the building block numbers an example vote region
is shown in Figure 4 on the left. Here, the target block num-
bers "238" and "239" are listed vertically in a table. We
therefore use a similar procedure to determine the building
block numbers except that the region is processed column-
wise from top to bottom. All words with category "Building
Block Number" inside the region are selected. If one column
of building block numbers has been detected, the procedure
aborts and the numbers inside this column are chosen.

The result after this is a city area name and a list of
building block numbers detected for the city area map. Each
combination of building block number and the city area name
is compared to a publicly available dataset containing infor-
mation about all public housing complexes in the city 3. If the
combination can be found, then the corresponding official ad-

3 https://data.gov.sg/dataset/
hdb-property-information

dress from the dataset is stored. Otherwise the combination
is discarded.

7.3 Building Height Estimation

For the building height estimation, we employ a simple ap-
proach of inferring the height based on the number of storeys
for each building. This number can be extracted from the
same public housing dataset as in the previous section. A
couple of the documents provided by the city authorities
in Singapore mention the heights of the storeys for several
buildings. Based on this information, we determine the fol-
lowing formula to estimate the building height h from the
number of storeys n:

h = hfirst + (n − 1) hother + hroof (1)

where hfirst = 3.6m is the estimated height for first floor,
hother = 2.7m the estimated height for every other floor and
hroof = 1.35m the estimated height added by the roof.

The applicability of this formula is limited to the dataset
of city area maps in Singapore only. There are a couple of
options to get a more general estimation of building heights.
In [5], statistics of additional building information taken from
a database are used to improve the building height estimation.
Stereo pairs of satellite images as in [9] or point clouds
could be utilized, as well. These methods would, however,
increase the overall complexity of the pipeline and getting
the additional data on a city scale is not always feasible.

8 Building Shape and Size Extraction

With the location information (block number and street name)
of the target buildings obtained from previous steps, here we
describe how to extract the shape and size of each building
based on it. Instead of directly processing the city area maps,
one can make use of some open source online maps such as
OpenStreetMap®. In the case of Singapore, we choose the
new OneMap API [24]. It is developed by Singapore Land
Authority and it is an official reference for building location
and shape.

8.1 Motivation of Using the New OneMap API

Processing an archived city area map as shown in Figure 2a
may lead to inaccurate building shape and very long com-
putational time. This is because most of the old maps were
drawn by hand and afterwards digitalized by scanning.

During the scanning process, some undesired noise such
as smudges and dots may be introduced, which makes the
shape segmentation more complicated. Additionally, these
maps were archived in the storage for years making some of

https://data.gov.sg/dataset/hdb-property-information
https://data.gov.sg/dataset/hdb-property-information
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them have damages even before scanning. All these different
kinds of noise and damages will not only introduce inac-
curacies in the segmented building shape but also demand
preprocessing to clean up the image. More sophisticated im-
age processing techniques should be applied accordingly,
which, of course, require longer processing time and more
computational power.

Furthermore, the majority of the archived city area maps
were drawn decades ago. Some newly constructed building
parts are not shown in these old city area maps. For example,
Figure 7a shows a capture of a building (Block No. 221A)
in satellite view from OneMap and Figure 7b is its corre-
spondence in the archived city area map. We highlight the
target building in Figure 7b by marking it green. The shapes
of the building in these two images are not identical because
some extensions (highlighted with red boxes in Figure 7a)
on one side of the facade is not shown in the old city area
map. Hence, with such information unavailable, of course,
we cannot get an accurate building shape from a city area
map.

Lastly, one major limitation of archived city area maps is
the lack of information about the precise location of buildings
on the surface of Earth. That is, there is no information with
regards to the latitude and longitude of buildings. This means
it is impossible to correctly place the generated 3D models
of buildings solely based on city area maps.

8.2 Usage of the New OneMap API

Due to the aforementioned reasons, instead of using the orig-
inal archived city areamap, our method extracts a more accu-
rate building shape in a faster manner by leveraging the new
OneMap API. Specifically, we use the new OneMap Search
API and Static Map API [24].

The Search API returns the latitude and longitude of
the target building center based on its block number and
street name. The Static Map API returns an image of a map
section based on some pre-defined parameters such as image
center coordinates, zoom level, image size and so on. In our
implementation, the image center coordinates are set as the
latitude and longitude of the target building center, which are
the outputs of the Search API. In order to get as many details
as possible, we use the maximum zoom level and the biggest
returned image size (512×512 pixels) provided by the Static
Map API for image retrieval. By using the maximum zoom
level, we have a fixed scale of the map which provides us
with information about the actual building size.

Figure 8a shows an example image retrieved by the Static
Map API based on the center coordinates of a building Block
No. 252, which is the target building in this case. In Section
8.3, we explain the necessity of getting Figure 8b. Only a
grayscale version of this image will be processed for extract-
ing the building shape. One can easily see that dealing with

(a) Satellite image of Block No. 221A [24]

(b) Block No. 221A in the archived city area map
(highlighted in green)

Fig. 7 Example of city area map not showing new construc-
tions of a building

such a computer generated image will lead to a much more
accurate segmentation result as well as a much shorter pro-
cessing time, comparedwithworking on a noisy and possibly
damaged archived city area map.

8.3 Steps of Building Shape Extraction

Image Acquisition The StaticMapAPI provides amaximum
returned image size as 512 × 512 pixels, which might not be
big enough to contain some very large buildings. Figure 8a
shows a returned image of the Static Map API which has a
building with its upper part cropped out. Such image will
result in an incomplete building shape after segmentation.

In order to handle this situation, instead of retrieving only
one 512 × 512 pixels image, we retrieve a 3-by-3 neighbor-
hood of the target image. The tiled image center will still
correspond to the latitude and longitude of the target build-
ing’s center. The latitude and longitude of the surrounding
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(a) Image retrieved for Block No. 252 without
image tiling

(b) Image retrieved for Block No. 252 with image
tiling

Fig. 8 Example of image retrieved with and without image
tiling for a large building[24]

eight images’ centers can be calculated from the center ones
for image retrieval using the Static Map API.

Eventually we end up with an image having a size of
1536× 1536 pixels. This size is big enough to hold an entire
building and it does not add noticeable extra computational
time. Figure 8b demonstrates such a tiled bigger image. For
the purpose of illustration, it is resized to the same size as
Figure 8a. The red dash lines indicate the boundaries of the
neighborhood images.

Segmentation Asmentioned before, only a grayscale version
of the API returned images will be processed. In the retrieved
images, all public housing buildings have the same grayscale
value (confirmed with the map legend). Hence, one simple
thresholding operation is able to segment all the target build-
ings successfully. However, here we do not use an optimal
threshold to segment all the public housing buildings in one
shot. Instead, we choose a slightly higher threshold to keep

Fig. 9 Grayscale version of the image retrieved from the
new OneMap Static Map API using the center coordinates
of Block No. 206[24]

Fig. 10 Thresholding result with a contiguous noisy object
indicated in red box

some annotations at the same time. This makes the extracted
building shape complete for those cases where the annota-
tions are overlapping with the building boundary. Then, we
determine the target building shape based on the contour
characteristics of all the objects remained after thresholding.
We explain how to remove those overlapped texts to get the
correct building shape in Section 8.4.

From now on, we use a different example building, Block
No. 206, and set the retrieved image size as 512× 512 pixels
instead of the tiled one for illustration purpose. Figure 9 is
the grayscale version of the API returned image and Figure
10 shows the result after thresholding.

Contour Processing Figure 10 shows that all the target build-
ing candidates and some noise are left after the thresholding
operation. We conduct contour processing on such results
for extracting the target building shape.
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Fig. 11 Result of removing small objects and noise. Red
dots are the centroids of contours and green dot is the image
center

Fig. 12 Extracted shape without removing overlapped block
name

Firstly, we remove all the objects whose contour areas are
small. The main purpose of doing this is to get rid of contigu-
ous objects around the target building, which, according to
the original city area map, are not part of the target building.
Figure 10 highlights such an object by drawing a red box
around it. Additionally, some other noise sharing the same
grayscale value are eliminated as well. The result image is
shown in Figure 11.

Secondly, we pick out the target building among all the
building candidates by choosing the contour whose centroid
has the shortest distance to the image center. As explained in
Section 8.2, the Static Map API uses the coordinates (in our
case, latitude and longitude) of the target building’s center as
the retrieved image center coordinates, which means these
two centers are overlapped. Therefore, the target building’s
contour centroid should be the closest one to the image center.
This is shown in Figure 11 with all the centroids of the
contours marked by red dots and the image center marked

in green. This method works for tiled image too because the
tiled image is centered at the target building’s center as well.

Finally, the shape of the target building is extracted based
on the selected contour. The result is shown in Figure 12 and
we explain how to get the correct building shape without
overlapped texts in the next section.

8.4 Overlapping Text Removal

As mentioned before, there are texts, for instance building
block number or building name, overlapping with the target
building boundary, such as Block No. 206 shown in Figure
9. Following the shape extraction steps described in Section
8.3, Figure 12 shows that the segmentation result of Block
No. 206 includes both the target building and the overlapped
texts on top of it. This distorts the extracted shape of the
building and will eventually affect the shape of the extruded
3D model, which is shown in Figure 17a.

We solve this problem by processing the detected contour
points. After extracting the target building with overlapped
texts, we separate the texts apart from the buildingwith a sim-
ple thresholding operation based on their different grayscale
values. The shapes of the separated two parts are shown in
Figure 13. Then, we remove the contour points of the text
shape from the contour points of the target building shape.
In the implementation, it is not that straightforward because
there is usually no intersection of the two sets of contour
points. So we remove all the contour points of the target
building which are adjacent to the texts’ contour points. The
remaining points are used to generate the 3D model and the
two ending points of the removed contour part are connected.
Using this simple connection, the distorted part of the build-
ing shape is corrected. An illustration of the final extracted
shape of Block No. 206 is shown in Figure 14.

9 3D Model Generation

The goal of our pipeline is to not only be capable of gen-
erating 3D model of a single building but also to be able
to generate 3D models of all the target buildings in a large
neighborhood. More importantly, each 3D building model
should have the correct aspect ratio and all the buildings in a
neighborhood should have the correct relative location with
each other, as in real world. We fulfill these goals simulta-
neously by converting the coordinate systems to a unified
one.

9.1 Unified Coordinate System Selection

In our pipeline, at this stage, there are three different impor-
tant parameters used to define a 3D model. However, they
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(a) Target building shape

(b) Overlapped text shape

Fig. 13 Separation of target building and overlapped texts

Fig. 14 Extracted shape of Block No. 206 after text removal

are in three different coordinate systems with three different
units. First, for the height information of a building, the unit is
meter. Second, for the location of a building, the Search API
returns the latitude and longitude in decimal form. Third, for
the retrieved shape of a building, the unit is pixel since it is
segmented from a 2D image. Here, we choose the world co-
ordinate system with latitude and longitude in decimal form
to represent all the contour points. It is because among these
three candidates it is the only one providing us with the in-
formation about how each building located with respect to
each other. Also, although the buildings are extracted from
separate retrieved images, their location information is well
maintained within this coordinate system.

9.2 Coordinate System Conversion

Wefirst do the conversion between building height and build-
ing shape. We accomplish it by converting the unit in meter
to pixel based on the fixed map scale. Then we convert both
height and shape with the unit of pixels into the unit of
latitude and longitude in decimal format. It is achieved by
measuring how much change in latitude and longitude with
respect to one pixel. We call this amount of change step. Ad-
ditionally, we need a reference point in each retrieved image,
which we should know its exact position in the image and
its latitude and longitude. The center pixel of each retrieved
image is a good choice since the Static Map API uses the
latitude and longitude of the target building center as the re-
trieved image center. We then compute how many pixels of
shift in both directions for each contour point with reference
to the image center pixel. Multiplying the shifts with step and
adding the results to the latitude and longitude of the image
center pixel will give us the contour points in the desired
form.

9.3 3D Model Extrusion

With all the detected contour points converted, we generate
the 3D model of a building. As a matter of fact, the building
shapes extracted from the images returned by the Search
API are not in a very high resolution, hence the extruded 3D
models have zig zag edgeswherever the edge is not vertical or
horizontal. We smooth those edges by doing interpolation on
all the contour points. After this, we extrude the 3D models
by duplicating the contour points and lifting them according
to the building height. Finally, we represent the 3D model in
the CityGML LOD1 format.

10 Results

In this section, the pipeline is tested on real archived city
area maps provided by city authorities in Singapore. Since
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the pipeline is separated into six distinct steps (see Figure 1),
we conduct tests for each of the steps individually. When-
ever reasonable, we also report the results for several steps
combined as in Section 10.4.

10.1 City Area Map Segmentation

The city area map segmentation described in Section 4 seg-
ments the input maps into smaller parts and filters out the
irrelevant ones. The purpose of this is to increase the accu-
racy of the whole pipeline by reducing the chance of false
detections originated from irrelevant parts of the map. Fur-
thermore, it should increase the performance by reducing
the amount of data which has to be processed by later steps.
A way of evaluating its effectiveness is therefore to calcu-
late the average fraction of the city area map which remains
after filtering. Our dataset of city area maps contains eight
maps with resolutions ranging from 13248 × 9222 pixels to
15433 × 13244 pixels. The result for this dataset is shown in
Table 1. To measure the performance, we repeat the segmen-
tation 10 times for each map. The average processing time
per map and iteration is shown in Table 1, as well.

Table 1 Results for the city area map segmentation and fil-
tering. The remaining area after filtering is averaged over all
eight maps. The processing time was measured on a machine
with an Intel(R) Core(TM) i7-8700K CPU@ 3.70GHz. It is
averaged over all maps and over 10 runs per map

Avg. Fraction of Remaining Area Avg. Processing Time [s]

0.40 0.714

10.2 Text Detection

To evaluate the text detection approach described in Section
5, we created a test dataset. This dataset is different to the
training dataset mentioned in Section 5 and is only used to
evaluate the final performance of the text detection mod-
els after training. For this dataset we randomly sampled 52
cropped images from the eight city area maps. All images
have a fixed size of 1280 × 720 pixels. For these images, we
manually annotated the bounding boxes of all text elements.
In total, the test dataset contains 378 ground truth bounding
boxes.

As a baseline, we evaluate the performance of the pre-
trained model which we use as the starting point for train-
ing. This result is compared with the final model which we
obtained after fine-tuning on our own training dataset as de-
scribed in Section 5. The results are summarized in Table
2.

10.3 Text Recognition

The text recognition results are evaluated on the held-out test
set as mentioned in Section 6. The final model was trained
from scratch on the synthetic training dataset. It is therefore
not possible to provide baseline results for it. Its results on
the test dataset are shown in Table 3.

10.4 Building Information Extraction

Our dataset of city area maps consists of 10 maps which
contain lists of target building blocks. From these, eight con-
tain a city area name which we consider as human readable.
These readable city areamaps contain in total 27 target build-
ing block numbers. To evaluate this step of the pipeline, we
count howmany of these buildings can be successfully found
in the public housing database, as described in Section 7. For
this task, all previous steps of the pipeline contribute to the
results. The results for the whole dataset and for each city
areamap individually are summarized in Table 4. To estimate
the total runtime of all steps necessary to find the building
information, we repeat them 10 times for each map. This
yields the average runtime for each map: 8.497 s (averaged
over all 10 runs). The measurement was conducted on a ma-
chine with Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
and GeForce RTX 2080 Ti GPU.

In Table 4, we can see that for two city area maps (No.
3 and 7), no buildings can be detected. These two cases are
caused by failures in previous steps of the pipeline as can
be seen in Figure 15. The actual keyword voting mechanism
described in Section 7.1 is not responsible for any of the
failure cases. For four of the eight maps, all target buildings
could be successfully detected. For the two remaining maps
which are partly correctly processed (No.5 and 6 in Table
4), the errors are caused by either the text detection step
(block numbers are not or only partly detected) or the text
recognition step (fully detected block numbers are wrongly
classified).

10.5 Building Shape and Size Extraction

We first test the building shape and size extraction with all
the 17 correctly detected blocks mentioned in Table 4. All
blocks are correctly extracted. Then, for a better evaluation,
another 83 public housing buildings are randomly selected
from the public housing database. Combining with the afore-
mentioned 17 blocks, we have a test set with 100 buildings in
total. Since we perform shape extraction based on OneMap,
we use the building shapes from it as the ground truth for
evaluation. If an extraction has the same shape as shown in
OneMap we treat it as correct, otherwise it is incorrect. The
extraction results are shown in Table 5.
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Table 2 Results for the pre-trained model compared to the final text detection model after fine tuning. The average precision
(AP) metric metric is calculated according to the evaluation protocol from the COCO object detection challenge [21]. AP50
refers to the average precision calculated using an intersection over union (IoU) threshold of 50%. AP75 uses an IoU threshold
of 75% and mAP is the mean average precision for all IoU thresholds from 50% to 95% in 5% steps

Model mAP AP50 AP75

Pre-trained on ICDAR 2013 and 2015 0.351 0.552 0.440
Fine-tuned on training data set 0.500 0.653 0.580

Table 3 Results for the final text recognition model. The metrics are calculated across all 3182 classes. To get single values
for the metrics, we performed a weighted average where the weights reflect the number of instances per class. This is
relevant because the residual class contains significantly more examples than the other classes (see Section 6). F1score is the
unweighted harmonic mean between precision and recall

Model Precision Recall F1score

Trained from scratch on synth. data 0.98 0.97 0.97

All of the four incorrect extractions are caused by over-
lapped texts covering a large portion of the building bound-
ary. One incorrect case is shown in Figure 16. Figure 16a
is the retrieved image from OneMap and cropped to show
the details more clearly because Block No. 10C is a small
building. One can see that the texts cover about one third
of the target building and the covered building part contains
critical information about the building shape. Thus, after
text removal, the extracted building shape is incorrect and
results in generating an incorrect 3D model as in Figure 16b.
The generated 3D model has a triangle shape because our
text removal method simply connects the two ending points
in the set of the remained contour points of the building.
The average shape extraction time for these 100 buildings is
0.072s, which was measured on a machine with an Intel(R)
Core(TM) i7-7800X CPU@ 3.50GHz. The time for retriev-
ing an image from the Static Map API may vary according to
the internet connection. For the 100 buildings in the test set,
the average image retrieving time is 0.301s measured with
the same machine as for shape extraction.

10.6 3D Model Generation

Single Building We first show the result of generated 3D
model for a single building, which is the target building in
Figure 9. Having the overlapping texts removed as described
in Section 8.4, we get the generated 3D model in Figure 17b,
which is the final result. We can see the differences between
with and without text removal operation from Figure 17.
The average time of generating the 3D model for a single
building is 0.011s measured with all 100 buildings in the
test set mentioned in Section 10.5 and on a machine with an
Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz.

Buildings in a Large Neighborhood As we claimed before,
our method not only can generate 3D building models with
correct aspect ratios but also can generate buildings in a
large neighborhood with correct relative locations. Figure 18
shows our generated 3D building models in an area from two
different views. We evaluate our results by superimposing
3D building models on a 2D map. The 2D map in Figure

Table 4 Results of the first four steps in the pipeline to extract building information from city area maps

Map Target Blocks Detected Blocks Correct Detections False Detections Precision Recall

Map 1 3 3 3 0 1.00 1.00
Map 2 4 4 4 0 1.00 1.00
Map 3 2 0 0 0 0.00 0.00
Map 4 2 2 2 0 1.00 1.00
Map 5 8 4 2 2 0.50 0.25
Map 6 5 4 4 0 1.00 0.80
Map 7 1 0 0 0 0.00 0.00
Map 8 2 2 2 0 1.00 1.00

All 27 19 17 2 0.89 0.63
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(a) Excerpt of the city area map No. 3 in Table 4 after the segmentation step. The blue boxes show the remaining segments after filtering. The list
of building blocks on the left (under the keyword ’SCHEME’) is not contained in a box and will be ignored. Therefore no building blocks for this
map can be detected in later steps

(b) Excerpt of the city area map No. 7 in Table 4 after the text recognition step. The city area name was detected by the text detection step. However,
the text recognition could only detect the first word ’Jurong’ (indicated by the light green box). The second word ’East’ is wrongly marked as
irrelevant (indicated by the gray box). The word ’Jurong’ appears several times in the list of possible city area names. Therefore no city area can
be uniquely assigned to this map and hence no building blocks identified

Fig. 15 Illustration of the failure cases encountered in Table 4

Table 5 Results of the shape extraction

Total Blocks Extracted Blocks Correct Extraction Incorrect Extraction

100 100 96 4

18 is extracted from OpenStreetMap®
4 using the latitude

and longitude values of this neighborhood. Figure 18 shows
qualitatively the 3D building models are placed at correct
locations on top of this map. Therefore, we can conclude
that having the coordinate systems converted according to
Section 9.1 and Section 9.2, our generated CityGMLmodels
are placed at the correct locations.

4 ©OpenStreetMap contributors, the data is available under the Open
Database License, https://www.openstreetmap.org/copyright.

11 Discussion

11.1 City Area Map Segmentation

In Table 1, we can see that, after filtering out the irrelevant
segments, we are left with only 40 % of the original city area
map on average. This has two positive effects on the overall
pipeline. Firstly, it reduces possible errors, which might be
originated in the areas of the map which are filtered out.
It could for example be that a wrongly classified city area
name is by chance surrounded with several keywords for the
city area name. This might cause the whole map to be as-
signed to this wrong city area. By filtering out large parts of
irrelevant data, the chances for such errors are reduced. Sec-

https://www.openstreetmap.org/copyright
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(a) Cropped retrieved image for Block No.10C
[24]

(b) 3D model generated based on incorrect shape
extraction

Fig. 16 One incorrect shape extraction case

ondly, because only a fraction of the original data is further
processed, the runtime and memory footprint of the whole
pipeline is reduced. However, a drawback of this step is that,
it adds additional complexity and therefore another possible
error source. This is exemplified by Figure 15a, where the
segmentation step filtered out a relevant part of the city area
map. To reduce the probability for cases like this, the hyper-
parameters can be adjusted to filter out a smaller fraction of
the original map which would, however, also reduce the pos-
itive effects. It therefore boils down to choosing a reasonable
balance which depends on the application.

In general, this map segmentation step could be useful
for similar scenarios in which an input document is divided
by horizontal an vertical lines into smaller segments.

11.2 Text Detection

The results in Table 2 are based on our own dataset and hence
cannot be compared to other works. Nevertheless, it can be
seen that fine tuning the model on the training dataset im-

(a) Extruded LOD1 model without text removal

(b) Extruded LOD1 model with text removal

Fig. 17 Generated 3D model for a single building

proves the average precision on the test dataset significantly.
As the test dataset was generated from the real city areamaps,
it can be assumed that the fine tuning improves the overall
performance of the pipeline. As described in Section 5, our
text detection method is based on an existing method and
implementation. This existing method was originally devel-
oped in the context of scene text detection based on color
pictures taken with the Google Glass. Our results demon-
strate its applicability in the domain of grayscale document
text detection after fine tuning only on a small dataset of 104
city area segments.

11.3 Text Recognition

The results in Table 3 look promising, but they are difficult to
compare with other approaches because they were obtained
on our own synthetic dataset. However, the overall results
of the pipeline indicate that it translates to the real data as
well. Together, this confirms that the approach from [18] to
obtain a working text recognition model by training on a
synthetic dataset works. This is in general useful because it
removes the dependency on large labeled training datasets,
which is often a limiting factor in the application of deep
learning methods in practice. We could obtain our results
without having to manually annotate a single word image.
Nevertheless, the failure case in Figure 15b shows that a bet-
ter text recognition performance is still desirable to improve
the overall performance of the pipeline. For example, more
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(a) A view of 3D building models in a large neighborhood

(b) Another view of 3D building models in a large neighborhood

Fig. 18 Generated 3D models for a large neighborhood

model architectures than the one described in [18] can be
tested for a better performance on our dataset. Another op-
tion is to create a small dataset based on our data and use it
for fine tuning similar to Section 5.

11.4 Building Information Extraction

The results in Table 4 and the failure cases in Figure 15
demonstrate the complexity of this task. There are several
possible error sources which might result in a single building
block or the whole list of building blocks to be not correctly
identified. Nevertheless, for four out of eight city area maps,
all buildings could be successfully detected. In the remaining
maps, none of the errors can be traced to the keyword voting
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mechanism step described in Section 7.1. This indicates that
it works quite robustly on our dataset.

The results demonstrate only one possible application
of the building information extraction steps. In general, the
same approach can be used when other information indicated
by previously-known keywords has to be extracted from sim-
ilar map documents.

11.5 Building Shape and Size Extraction

Table 5 shows that our shape extraction method is able to
segment the shapes of all the public housing buildings. The
failure cases of the method, regarding the correctness of the
extracted shapes, are coming from texts or other annotations
overlapping a large portion of the buildings. In these cases,
the lost of information is too much. Therefore, our method
actually can achieve a good result in a simple and fastmanner.

11.6 3D Model Generation

Figures 17 and 18 show that we accomplish the goal of
generating 3D models with both correct aspect ratios and
relative locations. It is difficult to measure how accurate the
generated models are because otherwise we need the ground
truth data of all the generated buildings. The results shown in
Figure 18 look quite convincing and can already be used for
visualisation and simulation in urban planning. Furthermore,
our CityGMLmodels are with the correct world coordinates,
which can be easily mapped to a virtual map provider or
extended to an actual terrain data for a more sophisticated
visualisation.

12 Conclusions and Future Work

In this paper, we have presented a pipeline to automatically
generate 3Dbuildingmodels inCityGMLLOD1 format from
archived city area maps. Our proposed method tackles the
challenges of handling low quality scanned archived maps
by fusing information from multiple sources. We proposed
to extract the essential building block numbers and city area
name information from an input archived map. Based on this
information, in order to generate 3D building models which
are described in the input map, we proposed to integrate and
utilize the number of storeys and address information from a
public housing database as well as retrieving and extracting
the shape, size and actual location of the buildings from an
online city map API. Our experimental results demonstrated
that the proposed pipeline is able to generate correct 3D
building models from archived city area maps provided by a
city authority. As such, the proposed pipeline as a whole is
the main contribution of this paper. In addition, we showed

that several of the individual steps of the pipeline solve tasks
which can be useful in other contexts, as well (Section 11.1
and 11.4). For the text detection and recognition steps we
used already existing deep learning methods. Our contribu-
tion here is to demonstrate their application in a different
context by leveraging only a little amount of labeled data
(Section 11.2) or pure synthetic data (Section 11.3).

In the future, we plan to generate 3D building models in
higher LOD, for example, adding roofs, windows, doors and
room details. We also plan to fuse other information to en-
hance the 3D building models such as adding textures based
on online photos. Furthermore, by using this information we
plan to improve the automatic building height estimation,
similar to the work in [5].
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