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Abstract. With growing air traffic density, air-traffic controllers (ATCOs) are 
facing more challenges in interpreting and analyzing air traffic information. As 

one of the solutions to this problem, automation supports such as tactile human 

computer interface, interactive 3D radar displays, and conflict resolution aid (CRA) 
are proposed for the enhancement of the current air traffic control (ATC) systems. 

To evaluate the proposed ATC systems, questionnaires are commonly used to get 

the feedback from ATCOs. However, the questionnaires are usually administered 
upon completion of each ATC simulation task thus provide only overall ratings 

towards the new ATC systems. In this paper, we propose and implement a novel 

Electroencephalogram (EEG)-based neurocognitive tools for evaluation of ATC 
systems. The nature of EEG-based technique is that the brain states can be 

monitored in a high resolution time, fitting the nature of time-critical ATC tasks. 

Thus, such EEG-based human factors study allows for real-time monitoring of 
ATCOs’ mental workload during the task performance in ATC systems. We 

designed and conducted an experiment to evaluate the costs and benefits of the 

CRA and tactile user interface in future ATC systems. Thirty six participants 
participated in the experiment and were assigned into three groups of different 

display modes: Non-Display, Display, and Trajectory Prediction. In each group, 

three CRA conditions were given: Manual, Reliable and Unreliable. The EEG data 
were recorded during the tasks, and the traditional workload evaluation method 

NASA Task Load Index (TLX) was administered at the end of each task. The 

result shows that the ratings obtained from NASA TLX and from the EEG labeling 
are highly correlated. Thus, the EEG-based system is reliable to recognize 

workload during the task performance. With the proposed EEG-based system, we 
found that 1) relatively high workload was observed at the beginning of the 

experiment in each group which could be due to participants’ unfamiliarity with 

the interfaces; 2) participants in the trajectory prediction group had much higher 
workload as compared to vertical display and non-display groups, which could be 

attributed to its complexity. The changes of workload are due to interaction 

between the type of display modes and time (p<0.05); 3) workload varied slightly 
with different CRA setting. The results show that the proposed EEG-based system 

for human factors study can provide better understanding of real-time mental 

workload changes during the task performance in new ATC systems, therefore 
enables the evaluation of current and future ATC systems. 
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Introduction 

Air Traffic Control is one of the key components in ensuring low occurrence of 

aviation safety incidents and it has remained ‘human-centered’ even until today. 

Human factors are an important element in air traffic control as Air Traffic Controllers 

(ATCOs) are responsible in coordinating aircrafts in the airspace. In addition, the need 

to provide information such as weather and traffic information as well as the need to 

provide assistance when it is requested by pilots, have made their job more demanding 

and stressful. From the statistics provided by Changi Airport Group (CAG), the number 

of air flights movements and commercial aircraft movements stands at 1.84 million and 

341.4 thousand respectively [1]. Moreover, from the statistics, there is an upward trend 

in the number of aircraft movements in Singapore through the years [1] and we will not 

expect this trend to change in the near future. This poses a great challenge for air traffic 

control because safety risks will steeply increase when air traffic doubles.  

There has been increase in the use of automation aids such as conflict alert and 

minimum safety altitude warning which enable controllers to take immediate action to 

eliminate disastrous accidents [2]. Moreover, more researches are dedicated to the 

evaluation and implementation of better automation aids such as Conflict Resolution 

Aid (CRA) [3] and Automatic Identification of Risky Weather Objects in Line of Flight 

(AIRWOLF) [4] which help to improve performance of controllers. It has been shown 

that workload contributes to a significant 24% to incidents [5] and workload will 

become even more relevant when air traffic density increases in the future. There are 

many different methods available in the evaluation of workload experienced by ATCOs. 

In this paper, the main focus will be the use of Electroencephalography (EEG) due to 

real time monitoring and its potential to provide better workload evaluation [6].  We 

conducted an experiment in the span of four months at Air Traffic Management 

Institute, Nanyang Technological University, which aims at assessing the conflict 

resolution automation and tactile user interfaces in future ATC systems. By using EEG, 

we monitored the brain states such as workload when the ATCOs were performing 

ATC tasks. Subjective evaluation methods such as questionnaires were also given to 

ATCOs upon completion of the tasks. However, this kind of method can only provide 

an overall evaluation instead of continuous monitoring.  

The paper is constructed as follows. Section 1 presents review on common 

workload evaluation methods. Section 2 introduces the real-time EEG based mental 

workload recognition system. Section 3 gives the details of the experiment. Section 4 

shows the results, and Section 5 concludes the paper.  

1. Related work 

The controller’s workload is an important consideration in determining the maximum 

capacity of enroute air traffic [7]. Thus, there is a need for higher accuracy methods in 

evaluating ATCOs’ workload which is able to provide a comprehensive feedback 

considering the different factors affecting workload. Usually, the measurements of 

workload can be subjective and objective.  



1.1. Subjective workload evaluation 

Subjective workload is based on the judgement and memory of a person’s perception of 

his performance in a task [8]. However, there is a limitation to the accuracy of this 

method in workload estimation since numerous factors, such as a person’s plan greatly 

affect the selectivity of consciousness [9]. Nevertheless, subjective workload measures 

are widely accepted within research and industrial domains due to low cost and ease of 

administrating procedures for such measures [10]. 

The common use of subjective workload measures for air traffic control research, 

is based on the use of ratings on unidimensional or multidimensional scale to determine 

the workload of an individual [11]. NASA-TLX is a well-known method which 

includes six factors such as mental, physical, temporal demands, frustration, effort, and 

performance. It assumes that the combinations of these factors can  reflect the level of 

workload experienced when people are performing tasks [12]. NASA-TLX provides 

the highest sensitivity and obtains the highest acceptance among operators despite on it 

requires the longest time to complete [13].  

1.2. Objective workload evaluation 

Objective workload evaluation is often associated with the performance of the tasks 

including the primary and secondary task measures. The primary task measure 

estimates workload based on the capability of an individual in performing a primary 

task, while the secondary task measure estimates workload based on the capability of 

an individual to perform two tasks concurrently [14]. Better performance of secondary 

task could indicate that more residual capacity is available to it from the primary task, 

and the demand of cognitive resources of the primary task is also low [15]. Situational 

Present Assessment Method (SPAM) is associated with performance-based workload 

estimation via secondary task measure as well as situational awareness [16].  

1.3. Psychophysiological workload evaluation 

Psychophysiological methods in evaluating workload involve the analysis of the effect 

of physiological behavior due to changes in psychological variables [17]. Common 

psychophysiological methods used in workload evaluation for air traffic control include 

monitoring of cardiac activity, respiratory activity, eye activity, speech measures and 

brain activity [11]. EEG possesses many advantages in measuring workload due to its 

high time resolution, and it is considered to be the best among other workload 

evaluation methods that use eye tracking, pulse rate, etc. in human-machine interaction 

[18].  

2. EEG-based workload recognition 

We presented the real-time EEG-based brain states monitoring system CogniMeter in 

[19] which can identify brain states such as workload, emotion, and stress. In this study, 

the same algorithm which employs fractal dimension [20] and statistical features [21] 

are used to recognize ATCOs’ mental workload. The Support Vector Machine (SVM) 

is used as the classifier. The algorithm is validated in [22] and the best accuracy is 



90.39% for 2 levels mental workload recognition and 80.09% for 4 levels mental 

workload recognition. Since the SVM-based machine learning is a supervised one and 

the proposed mental workload recognition algorithm is subject-dependent one, a 

calibration is needed to train the classifier model. During the calibration, stimuli are 

given to the user to elicit different levels of workload and the EEG data are recorded. 

Fractal dimension and statistical features are then extracted. Together with the self-

assessment labels indicating the workload levels, the features are fed into the SVM 

classifier to train the model. In the real-time recognition phase, the processing steps 

also include feature extraction and classification. Same features as in the calibration 

phase are extracted. Then these features are used as the input to the SVM model 

obtained from calibration. Finally, the current workload level can be identified. 

3. ATC Experiment 

3.1. Experiment settings 

An experiment was carried out to study human factors in ATC work place. There were 

a total of 36 ATCO participants from the Civil Aviation Authority of Singapore 

(CAAS) and the Republic of Singapore Air Force (RSAF) controllers and students with 

prior knowledge in ATC. The participants were divided into three groups in this 

experiment: non-display, vertical display and trajectory prediction group. Besides the 

main radar display and two pseudo pilot display, a secondary touchscreen display, was 

used for either vertical display or trajectory prediction depending on the set-up. The 

vertical display provides information on the current and predicted flight level of 

aircrafts against time. The trajectory prediction provides information on the current and 

predicted flight level, plan view, speed (knots) and rate of descent and climb against 

time. No touchscreen display was available in the non-display group. Each group had 

to perform ATC tasks under three conditions: without Conflict Resolution Aid (CRA), 

with reliable CRA, and with unreliable CRA. Under the condition of reliable CRA, all 

conflict resolution provided by the system had perfect accuracy in resolving potential 

conflict, whereas under the condition of unreliable CRA, conflict resolution advisory 

provided by the system may not be able to resolve a potential conflict. The experiment 

session under each condition lasted for 1 hour. 

3.2. Data Collection 

Two types of data were collected in this experiment: the EEG data recorded during 

calibration and each session and NASA-TLX data collected after each session. 

3.2.1. EEG Data 

A wireless Emotiv EPOC is used for the collection of EEG signals in this experiment. 

The Emotiv EPOC is mounted on the head and has 14 channels (AF3, F7, F3, FC5, T7, 

P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) following the international 10-20 electrode 

system with CMS/DRL references. The sampling frequency of Emotiv EPOC is at 128 

Hz with a bandwidth between 0.16 Hz to 43 Hz [23]. As a calibration is needed, a 

series of Stroop Colour-Word Test is given as the stimuli to evoke different levels of 

workload and the EEG data are recorded at the same time. Together with the data 



obtained during performing of the ATC tasks, these two sets of data are used as the 

input to the EEG-based mental workload algorithm introduced in Section 2.  

3.2.2. Questionnaires  

Participants were also required to complete two sets of questionnaires after each task. 

The first one is NASA-TLX. Besides NASA-TLX questionnaire, we also include one 

more workload rating which is usually used in the proposed EEG-based system to label 

EEG data (ranges from 1 to 9 for low to high workload). 

4. Results 

In our previous study [24], we showed that results of the method used for labeling of 

the EEG data with workload levels is significantly correlated with NASA-TLX 

workload ratings results, and the EEG-based workload evaluation is reliable to be used 

in the recognition of workload level in the ATC tasks.  In this paper, we continue the 

analysis using the continuous workload levels recognized from EEG. 

For real-time continuous workload analysis, three levels of workload were used for 

a trade-off between higher accuracy and wider spread of the mean. The three levels of 

EEG-based recognized workload for each of the one-hour session was split into the 

interval of 5 minutes with an average taken for each 5 minutes interval. 

We first apply mixed ANOVA test to the collected data, where “time” is the 

within-subjects factor, display mode and CRA conditions are the between-subjects 

factor. The results are given in Table 1. The factor of time (p= 0.025) and the 

interaction between time and display mode (p= 0.04) were significant (both p values < 

0.05 as shown in Table 1). It can be concluded that ignoring the CRA setting and 

display mode, the workload values measured through the 12 time intervals are 

significantly different. Likewise, ignoring the CRA setting, the effect of display modes 

on workload is significantly different for different time intervals. The focus will be 

placed on the analysis of the effects of automation aids on workload at different time 

intervals. To analyse the effects of automation aids on workload, the mean and standard 

error of the workload measured for different time intervals are shown in Figure 1, for 

display modes and time intervals are shown in Figure 2, and for CRA settings and time 

intervals are plotted in Figure 3. 

Table 1. Mixed ANOVA test for within-subjects effect analysis. 

Factors F p  

Time 3.493 0.025* 

Display Mode * Time 2.438 0.04* 

CRA * Time 1.914 0.083** 

*Significant at  =0.05; **Significant at  =0.1 
 

In the red box of Figure 1, it can be observed that the mean workload is relatively 

high at the start of the session and from the 20th minute to the 45th minute. The 

significance value obtained from the mixed ANOVA test for time factor is 0.025, 

which means that ignoring the CRA setting and display mode, the workloads measured 

through the 12 time intervals are significantly different. The workload was highest in 



the middle of the simulation task. This finding could be due to higher number of 

aircraft after ramp-up period. Afterward, however, the workload was getting lower 

along the time as ATCOs became more familiar with the aircraft and airspace structure.  

 
Figure 1. Measure of workload ignoring the CRA setting and display mode in 12 time intervals. 

In the red box of Figure 2, it can be observed that the mean workload measured is 

the highest under the trajectory prediction and similar for the display and non-display 

mode. It can be associated with the information overload in the trajectory prediction 

where ATCOs also need time and effort in interpreting the complete information 

regarding aircraft status.  

 
Figure 2. Measure of workload based on display mode Non-Display (ND), Display (D), and Trajectory 

Prediction (TP) in 12 time intervals. 

In Figure 3, the mean workload obtained from the interaction between CRA setting 

and time intervals similar to the trend observed in Figure 1 except that the mean 

workload at the start of the unreliable CRA setting is relatively low, as shown in red 

box of Figure 3. In addition, no physiological workload difference was observed across 

different CRA conditions, indicating that the CRA brings neither benefit nor cost on 

ATCOs’ physiological workload. In [25], lower objective workload as indicated by 

shorter ready response latency in SPAM was found under the CRA conditions as 

compared to manual condition. Here, the results of our physiological-based workload 

measurement contradict to this finding in [25]. However, the subjective workload was 

not statistically different across the CRA conditions in [25], which is consistent with 

our EEG-based results. We can infer that the physiological workload was in line with 

the subjective workload but not with the objective workload. This fact deserves further 

investigation on different workload measurement methods. 

EEG-based workload evaluation method includes the continuous measurement of a 

subject’s workload, which allows a more detailed analysis of experiment results 



obtained. From the current ATC study, it could be found that the complexity of 

trajectory prediction has resulted in a higher workload compared to other display aids 

in all time points, and the reliability of CRA has minimal effect on workload. Therefore, 

the trajectory prediction aid needs to be redesigned to meet the aim of reducing 

workload experienced by air traffic controllers. 

 
Figure 3. Measure of workload based on the CRA settings Manual, Reliable and Unreliable in 12 time 

intervals. 

5. Conclusion 

In this paper, we presented the EEG-based mental workload recognition for human 

factors study in ATC systems. An experiment was carried out with three display groups 

and each group completed the ATC tasks in three CRA conditions. We analyzed the 

continuous workload changes in a 5 minutes interval. It was discovered that the 

workload was highest in the middle of the simulation tasks. In addition, workload was 

the highest with the trajectory prediction. This could be due to information overload 

that was encountered by ATCOs. This opens a possibility to further investigate the 

provision of the trajectory prediction display given a longer training period to 

familiarize ATCOs with the new display. Lastly, no physiological workload difference 

was found across the CRA conditions. 

Therefore, by utilizing the proposed EEG-based system, true understanding of 

ATCOs’ working pattern along the time can be obtained. Based on the analyses of the 

objective recognized brain states together with the subjective feedback from ATCOs, 

we are able to reliably evaluate current ATC systems and refine new concepts of future 

ATC system. However, the further analysis between EEG and objective workload 

measurement methods deserves continuing investigations.  
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