
Preprint Version. Manuscript submitted to and accepted by 2018 International Conference on Cyberworlds 

 

DOI:10.1109/CW.2018.00062 

 

Cross Dataset Workload Classification Using Encoded Wavelet Decomposition 

Features 

 

Wei Lun Lim 

Fraunhofer Singapore 

Nanyang Technological University 

Singapore 

wlim031@e.ntu.edu.sg 

Olga Sourina 

Fraunhofer Singapore 

Nanyang Technological University 

Singapore 

EOSourina@ntu.edu.sg 

Lipo Wang 

School of Electrical and Electronic Engineering 

Nanyang Technological University 

Singapore 

ELPWang@e.ntu.edu.sg 

 

 
Abstract— For practical applications, it is desirable for a 

trained classification system to be independent of task and/or 

subject. In this study, we show one-way transfer between two 

independent EEG workload datasets: from a large 

multitasking dataset with 48 subjects to a second Stroop test 

dataset with 18 subjects. This was achieved with a 

classification system trained using sparse encoded 

representations of the decomposed wavelets in the alpha, beta 

and theta power bands, which learnt a feature representation 

that outperformed benchmark power spectral density features 

by 3.5%. We also explore the possibility of enhancing 

performance with the utilization of domain adaptation 

techniques using transfer component analysis (TCA), obtaining 

30.0% classification accuracy for a 4-class cross dataset 

problem. 

Keywords-Transfer learning; EEG workload; Wavelet 
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I.  INTRODUCTION 

In workload classification applications involving 
electroencephalography (EEG) data as input, most would 
consider a subject and task specific approach. In other words, 
a classification system would first be trained on sample EEG 
data from a specific user performing a specific task. This 
system would then be used to classify subsequent EEG 
workload data generated from the same user performing the 
same task, with recalibration before every session. This 
approach by far gives the best possible performance and is 
widely used in practical applications. However, this system 
does not allow much in the way of generalization, with 
reduced performance when either task, subject or session is 
varied.  

To address this issue, previous studies have provided 
insight on solving generalized EEG workload classification 
problems in a cross-subject [1, 2], cross-task [3, 4, 5] or 
cross-session [6] manner.  

Outside of workload classification problems, transfer 
learning via domain adaptation has been shown as a viable 
method in EEG emotion classification [7, 8, 9] and fatigue 
studies [10]. Using large-scale data has also been shown to 
improve performance with transfer learning [11]. 

Ultimately, the aim would be to develop a system that is 
able to classify EEG workload data regardless of the subject 
or workload task in question. 

With consideration to the works above, we explore 
possible approaches to a subject and task independent EEG 
workload classification problem and conduct several 
simulations to evaluate their performance. Formally, we shall 
provide analysis for the following two hypotheses: a) 
Learned feature representations from a large EEG workload 
dataset have better capability in transferring to a new, 
independent EEG workload dataset compared to classical 
features of a similar type. b) Transfer learning techniques 
provide additional performance compared to classical 
approaches for EEG workload classification problems. 

II. METHODS 

A. Cross-Dataset Description 

The first dataset consists of 48 subjects selected from the 
post graduate university population, performing a single 
session of the SIMKAP multitasking test of the Vienna test 
system developed by Schuhfried GmbH [12].  

Four levels of cognitive workload were identified from 
the experiment process, with 3 minutes of EEG data 
recorded for each level. For the first level, subjects do not 
perform any actions. For the second level, subjects attempted 
a visual matching task. For the third level, subjects 
performed a question and answer task with stimuli given via 
audio and answers chosen from a selection on screen. The 
final level involves multitasking where subjects perform the 
prior two tasks simultaneously with additional audio 
questions requiring them to input answers at a certain time 
with reference to an on-screen timer.   
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The second dataset consists of 18 maritime trainees who 
performed a four level Stroop test lasting 1 minute for each 
level, with EEG data being recorded.  

The first level of the test had the subject observe a test 
screen without performing any actions. The second level 
required subjects to enter a correct response based on the ink 
color of the text displayed on screen. In this level, the ink 
color matches the text, e.g. the word “blue” is displayed in a 
blue color. The third level requires subjects to perform the 
same task, with a mismatch between the text description and 
ink color. The word “blue” might be displayed in a yellow 
color and the correct response would be the answer 
“yellow”. The final level has the subject perform the task in 
level three with an additional restriction of responding within 
1 second of stimuli display, to encourage quicker cognitive 
processing of the stimuli shown. 

In both datasets, questionnaires were administered for 
each workload level, as a subjective measure of workload. 
The trend from the questionnaire indicates that the subjects 
feel an increase in workload from level 1 to 4. Sample 
screens from both tests and the questionnaire can be viewed 
in Fig. 1 – 3. 

From the above dataset description, the subjects’ 
background (university graduate vs maritime trainee) and 
tasks involved (multitasking test vs Stroop test) are 
sufficiently different for a cross dataset EEG cognitive 
workload classification analysis. 

 

 

Figure 1.  Screenshot of the SIMKAP multitask test. Subjects are to mark 

items in the right panel by matching those already crossed out on the left 

panel. Responses to auditory questions are completed by selecting the 

correct answer from the bottom panel. 

 

Figure 2.  Questionnaire on a 1-9 scale for rating of mental workload, 

which subjects were required to fill after each task. 

 

Figure 3.  Stroop test for 4 levels workload calibration. Clockwise from 
top left: Level 0, subjects are to observe the screen but not respond. Level 

1, subjects are to respond by pressing the correct key corresponding to the 

ink color displayed. Level 2, same task as level 1 but with mismatch 
between word meaning and ink color. Level 3, same task as level 2 but 

with response time limit of 1 second imposed after stimulus display. 

B. Data Processing 

In both datasets, the Emotiv EPOC device with sampling 
frequency of 128Hz was used to measure the EEG of 
subjects during the tasks. 14 channels at positions AF3, F7, 
F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, 
according to the 10-20 international system were monitored.  
The EEG data was processed with a non-overlapping 
window of 4 seconds over the theta (4-8Hz), alpha (8-16Hz) 
and beta (16-32Hz) bands to obtain the average power 
spectral density (PSD), average wavelet coefficient and 
encoded representation of wavelet decomposition. These 
three bands were specifically selected as they show 
correlation with EEG workload activities [4, 13]. In addition, 
the features under consideration were also chosen in a way 
that ensures a fair comparison. Being derived from the same 
EEG frequency bands, the physiological relationship is 
preserved, with the same dimensionality for each set of 
features.  

Wavelet decomposition using symlet wavelet of order 9 
(sym9) [14] was performed to obtain wavelet coefficients 
pertaining to the 3 bands at decomposition levels 4, 3 and 2. 
Average coefficient value for each stated level was taken to 
form a feature set.  

To obtain an encoded representation, each set of wavelet 
coefficients were passed through separate sparse 
autoencoders with number of hidden neurons set to number 
of integer frequency values multiplied by number of 
channels, with logistic sigmoid as the transfer function. The 
resultant encoded representations were concatenated and 
passed through another sparse autoencoder with number of 
hidden neurons set to number of features multiplied by 
number of channels, with a positive saturating linear transfer 
function. This two-level encoder design tries to learn 
relationships within each individual band at the first level 
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and then attempts to learn relationships between each 
frequency band at the second level. The encoder structure is 
illustrated in Fig. 4. All processing work was performed on 
MATLAB r2018a. 

C. Classification 

To establish a baseline performance of the proposed 
features to be studied, we apply the softmax classifier, 
implemented by training a fully connected neural network 
with 4 hidden neurons and a softmax layer. The network is 
trained with the SIMKAP dataset as training data and a 
single subject from the Stoop dataset is used as test data. 
This is repeated for each of the 18 subjects with 
classification accuracy recorded. With this baseline 
established, we proceed to explore domain adaptation via 
transfer component analysis, which learns a new 
representational “transfer component” subspace which 
minimizes data distribution between two separate domains 
[15]. A basic grid search was used to optimize the 
hyperparameters for each feature set. In our study, the first 
domain will be the entire SIMKAP dataset while the second 
domain will be a subject from the Stroop dataset. 

 

 

Figure 4.  Two level encoding structure for wavelet coefficient 

representation. 

III. RESULTS 

We first describe the performance in terms of average 
accuracy obtained for the different sets of features studied, 
using the softmax classifier. An average classification 
accuracy of 27.2% was obtained using the encoded wavelet 
features, compared to a 23.7% using PSD features and 
23.5% using average wavelet coefficient features. Statistical 
testing with a two tailed Wilcoxon’s signed rank test 
comparing treatments between the different features obtains 
a significant difference, with at least p < 0.1, for the encoded 

wavelet representation with respect to PSD or average 
wavelet coefficient. No significant difference was obtained 
when comparing between PSD and wavelet coefficient 
features.  

When TCA was tested, the average numerical 
performance of all input features showed an increase. 
Statistical significance, however, was not observed either 
between feature sets or when comparing between results 
obtained by utilizing TCA and that of the softmax classifier. 

Table 1 summarizes the main results described above 
while Fig. 5 and 6 shows a plot of accuracy for the subjects 
with the three studied features, with plots for the two 
different classification methods. 

TABLE I.  CLASSIFICATION ACCURACY OF DIFFERENT FEATURES 

USING SOFTMAX AND TCA 

Features 
Accuracy 

Softmax TCA 

PSD 23.7 % (8.2) 26.9 % (5.3) 

Wavelet Coeff. 23.5 % (7.0) 26.8 % (5.0) 

Encoded Wavelet Coeff. 27.2 % (5.2) 30.0 % (7.5) 

 

 

Figure 5.  Box plot of 4 class classification accuracy for studied features 

with softmax classifier. 

 

Figure 6.  Box plot of 4 class classification accuracy for studied features 

with domain adaptation via TCA. 
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IV. DISCUSSION 

In this study, we seek out to verify the following two 
hypotheses, that a) Learned feature representations from a 
large EEG workload dataset have better capability in 
transferring to a new, independent EEG workload dataset 
compared to classical features of a similar type, and b) 
Transfer learning techniques provide additional performance 
compared to classical approaches for EEG workload 
classification problems. 

From the results, we observed that there is a significance 
difference, at a p = 0.1 level, between the median values of 
the treatments when encoded wavelet coefficients were used 
as features. This finding suggests that implementing an 
encoding scheme on features from a large dataset might 
provide more generalization power when performing 
workload classification on a separate dataset. When domain 
adaptation was implemented, a significant difference was not 
observed in both cases comparing between studied features 
and between classification schemes.  

While a conclusion based on statistical significance for 
the second hypothesis cannot be reached, we observe that the 
numerical average classification accuracy of all studied 
features shows an increase of around 3%. This incentivizes 
the usage of domain adaptation techniques such as TCA as 
we see a stable improvement in performance across features.  

Although our analysis shows that cross dataset problems 
can benefit from the proposed methodology, the current 
performance is still too low to be utilized in any real 
application. For a 4-class problem, with chance levels at 
25%, using basic feature sets such as PSD or average 
wavelet coefficients in a cross-dataset manner leads to 
performance below 25%. Even with encoding and TCA, 
while average accuracy has improved to above chance levels, 
it is still too low for practical implementations. 

The formulation of our problem statement was aimed to 
address cross dataset performance as opposed to previous 
works on cross subject or cross tasks. A second degree of 
independence from both an entirely new subject set and task 
seems to greatly affect performance, hence there is a need to 
study possible ways to mitigate its effect. With reference to 
the results in this study, future development in cross dataset 
analysis is needed and can develop further in any of these 
three areas: 1) feature development, 2) improved 
representation learning algorithms and 3) improved domain 
adaptation algorithms. These areas hold the potential for 
progress in achieving the goal of obtaining useful levels of 
classification performance for a cross dataset problem. 
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