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Abstract

Image-based localization (IBL) aims to estimate the

6DOF camera pose for a given query image. The cam-

era pose can be computed from 2D-3D matches between

a query image and Structure-from-Motion (SfM) models.

Despite recent advances in IBL, it remains difficult to si-

multaneously resolve the memory consumption and match

ambiguity problems of large SfM models. In this work,

we propose a cascaded parallel filtering method that lever-

ages the feature, visibility and geometry information to fil-

ter wrong matches under binary feature representation. The

core idea is that we divide the challenging filtering task into

two parallel tasks before deriving an auxiliary camera pose

for final filtering. One task focuses on preserving poten-

tially correct matches, while another focuses on obtaining

high quality matches to facilitate subsequent more power-

ful filtering. Moreover, our proposed method improves the

localization accuracy by introducing a quality-aware spa-

tial reconfiguration method and a principal focal length en-

hanced pose estimation method. Experimental results on

real-world datasets demonstrate that our method achieves

very competitive localization performances in a memory-

efficient manner.

1. Introduction

Image-based localization (IBL), i.e. computing the

6DOF camera pose for a query image, is a fundamen-

tal problem in many computer vision tasks. For example,

IBL plays a key role in incremental Structure-from-Motion

(SfM) reconstruction [13,36], visual place recognition [29],

and visual navigation for autonomous vehicles [33]. IBL

has witnessed tremendous advancement by means of deep

learning [18, 19] and image retrieval techniques [1, 2, 34].

However, structure-based IBL [6,21,23,31,37,38,41] by di-

rectly establishing 2D-3D matches between a query image

and SfM models is still the most prevailing strategy. Recent

state-of-the-art methods handle the match ambiguity under

high-dimensional feature representation with semantic con-

sistency [38]. However, it remains challenging and crucial

to solve this problem under compact feature representation.

A large SfM model requires prohibitive memory con-

sumption to store tens of millions of descriptors. Mean-

while, match filtering becomes difficult, as it may contain

many nearly identical descriptors. Particularly, the feature

(e.g. visual similarity), visibility (e.g. point-image relation-

ship), and geometry (e.g. camera pose) information in IBL

leads to three interesting questions: Is it possible to improve

the discriminative power of each information? How to unify

them so that each can play its proper role, i.e. use its dis-

criminative power to a tee? When is the appropriate phase to

engage one specific information in an IBL pipeline? The ac-

curacy is also a key issue for IBL especially in autonomous

driving applications. The camera pose can be estimated

by using a minimal pose solver [5] in RANSAC [12]. To

achieve high accuracy, degenerate pose hypotheses should

be prevented from being sampled or selected.

In this paper, we propose a cascaded parallel filtering

method with respect to a binary feature representation via

Hamming Embedding [15]. Using this binary feature repre-

sentation, we can largely reduce the memory consumption.

Meanwhile, it will introduce more ambiguities than high-

dimensional feature representation, making match filtering

notoriously harder. To break this dilemma, our proposed

method filters wrong matches in a cascaded manner by se-

quentially leveraging the intrinsic feature, visibility, and ge-

ometry information. When engaging one type of informa-

tion, we use a relaxed criterion to reject matches and retain

a match pool that focuses on preserving correct matches.

In parallel, we use a strict criterion to obtain high confi-

dent matches, which facilitate subsequent filtering steps. In

feature-wise filtering, we reformulate a traditional match

scoring function [16] with a bilateral Hamming ratio test to

better evaluate the distinctiveness of matches. In visibility-
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Method Feature Type Compactness
Match Filtering

Prior-free SR
Feature-wise Visibility-wise Geometry-wise

AS [31] SIFT ✗ Strict ✓ ✗ ✓ ✗

WPE [21] SIFT ✗ Relaxed ✓ ✗ ✓ ✗

CSL [37] SIFT ✗ Relaxed ✗ ✓ ✗
∗

✗

CPV [41] SIFT ✗ Relaxed ✗ ✓ ✗
∗

✗

Hyperpoints [29] SIFT ✓ Relaxed ✓ ✓ ✓ In RPE

EGM [23] SIFT+Binary ✗ Relaxed ✓ ✗ ✓ ✗

TC [6] SIFT ✗ Relaxed ✗ ✓ ✓ ✗

SMC [38] SIFT ✗ Relaxed ✓ ✓ ✗
∗

✗

Our method Binary ✓ Relaxed ✓ ✓ ✓ Before RPE

Table 1: Comparison between our method and other structure-based IBL methods. ✗∗ means that the vertical direction of

camera is known in advance, SR represents Spatial Reconfiguration and RPE represents RANSAC-based Pose Estimation.

wise filtering, we explore the point-image relationship to fil-

ter wrong matches by retrieving relevant database images.

Moreover, we propose a two-step match selection method

by exploring the point-point relationship, which allows us

to obtain substantial 2D-3D matches for computing an aux-

iliary camera pose. In geometry-wise filtering, we apply

this auxiliary camera pose on the retained match pool to re-

ject wrong matches by means of re-projection error.

Our method also aims to improve the localization accu-

racy based on two key observations. The first observation

is that, correct matches that appear in sparse regions, are

essential to establish a non-degenerate camera pose hypoth-

esis. Due to the scarcity of such matches, they are usu-

ally neglected in camera pose estimation. Consequently,

we propose a quality-aware spatial reconfiguration method

to increase the possibility of sampling such matches in

RANSAC-based pose estimation. The second observation

is that, several top ranked camera pose hypotheses that have

similar and realistic focal length values, are more robust

than the camera pose hypothesis with the largest number

of inliers. Based on this, we shift the focus to find a prin-

cipal focal length value so that we can obtain a more accu-

rate camera pose accordingly. The evaluation on benchmark

datasets demonstrates that our method gets promising local-

ization results with significantly lower memory consump-

tion comparing with state-of-the-art methods. The source

code of our method is available at https://github.

com/wentaocheng-cv/cpf_localization

Related work. In recent years, numerous structure-based

IBL approaches [6–9, 14, 21–23, 29–32, 35, 37, 39, 41] have

been proposed. Table 1 shows an overview of state-of-the-

art structure-based IBL approaches. Feature-wise filtering

that mainly relies on the widely used SIFT ratio test [24]

is a fundamental strategy in IBL. Efficient 2D-3D feature

matching methods [9,31] require a strict feature-wise filter-

ing criterion to generate highly confident seed matches. The

matches that are co-visible frequently with seed matches

are prioritized to accelerate the matching process. Recent

works [6,21,28,37,38,41] commonly relax the feature-wise

filtering criterion to preserve more correct matches and shift

the filtering task to visibility or geometry tools. Li et al. in-

troduce a RANSAC sampling strategy by prioritizing sam-

ples with frequent co-visibility [21]. Liu et al. propose a

ranking algorithm by globally exploiting the visibility in-

formation on a Markov network [23]. Top ranked matches

are then filtered through traditional SIFT ratio test. Cam-

poseco et al. propose a geometric outlier filtering approach,

in which a novel 2-point solver is able to compute an ap-

proximate camera position [6]. Assuming that the gravity

direction and an approximate estimation of camera height

are known, both Zeisl et al. and Svarm et al. present geo-

metric outlier filtering approaches to handle extremely large

outlier ratios [6, 37]. Toft et al. derive an outlier filtering

method by combining the known gravity direction prior and

semantic information [38].

In order to reduce the memory consumption of large SfM

models, point cloud simplification approaches [7, 8, 22, 25]

select a subset of representative 3D points by formulat-

ing a set cover problem. However, the reduction of points

usually decreases the localization effectiveness and accu-

racy. Learning-based approaches implicitly compress the

SfM model by training a CNN model to regress the camera

pose [18, 19, 40] or scene coordinates [4]. Yet, when facing

large SfM models, these approaches either have low accu-

racy [18, 19] or encounter a complete training failure [4].

Sattler et al. quantize the model descriptors into a 16M

fine visual vocabulary to reduce memory consumption [29].

To handle the ill-conditioned spatial distribution, they im-

prove the effective inlier count algorithm [14] and apply it in

the RANSAC verification stage. In contrast, our proposed

quality-aware spatial reconfiguration method is employed

before RANSAC-based pose estimation, which allows us to

obtain more non-degenerate pose hypotheses with the same

number of RANSAC iterations.

2. Proposed Method

Fig. 1 shows the structured-based IBL pipeline using our

method. In this section, we describe each step in detail.
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Figure 1: Overview of the localization pipeline using our cascaded parallel filtering method. A cascade of feature-, visibility-

and geometry-wise filtering steps is illustrated from left to right. Two parallel tasks are applied in both the feature-wise

(green) and visibility-wise (blue) filtering steps. One task with strict criterion aims for facilitating subsequent steps. Another

task with relaxed criterion (in red arrow) aims for preserving correct matches.

2.1. Feature­wise Match Filtering

First, we introduce the feature-wise match filtering step.

The goal of this step is twofold: 1) to retain a feature-wise

match pool by rejecting obviously wrong matches, 2) to ob-

tain a set of feature-wisely confident matches to facilitate

subsequent filtering steps.

Data pre-processing. Let P be the 3D points in a SfM

model. Each 3D point is associated with a set of SIFT de-

scriptors. A general or specific visual vocabulary should

firstly be trained using clustering techniques. In the offline

stage, the descriptors of a 3D point are assigned to their

closest visual words through nearest neighbor search. For

efficiency, we follow [31] by representing the SIFT descrip-

tors of a 3D point as an integer mean descriptor per visual

word. Subsequently, each integer mean descriptor is con-

verted into a compact binary signature containing B bits us-

ing Hamming Embedding [15]. Given a query image, a set

of SIFT descriptors are extracted, denoted as Q. For each

descriptor q ∈ Q, we first assign it to its closest visual word.

Using Hamming Embedding, we also obtain the binary sig-

nature for descriptor q, denoted as sq . For each 3D point

p ∈ P , if one of its associated integer mean descriptors is

quantized into the same visual word with query descriptor

q, a 2D-3D match can be established as m = {q ↔ p}. The

Hamming distance of m can be measured as h(sq, sp).

Bilateral Hamming ratio test. To evaluate the distinctive-

ness of the resultant 2D-3D matches, previous works mainly

focus on the SfM model side by using a fixed Hamming dis-

tance threshold [35], Gaussian weighting [17], or density

estimation [3]. Few attentions have been paid on filtering

on the query image side, where the corresponding feature

space is easier to distinguish correct matches due to its spar-

sity. Inspired from the variable radius search in [41], we

propose a bilateral Hamming ratio test that operates on both

the query image and the SfM model.

In order to prevent correct matches from being rejected

in this step, we apply a coarse filtering scheme by us-

ing a large Hamming distance threshold τ . Therefore, for

a match m = {q ↔ p}, the set of 3D points that can

form a match with query descriptor q can be defined as

P(q) = {p ∈ P|h(sq, sp) ≤ τ}. Similarly, the set of query

descriptors that can form a match with 3D point p can be

represented as Q(p) = {q ∈ Q|h(sq, sp) ≤ τ}. Our core

idea is that a match should be distinctive if its correspond-

ing Hamming distance is significantly lower than the aver-

age Hamming distance in P(q) and Q(p). To evaluate a

match within the feature space of a query image, we apply

an image side Hamming ratio test as follows:

t(m) =

∑

j∈Q(p) h(sj , sp)

h(sq, sp)|Q(p)|2
, (1)

where one |Q(p)| in |Q(p)|2 is used to compute the aver-

age Hamming distance, and another is to penalize a match

whose corresponding 3D point establish multiple matches.

It is safe to reject a match when it is obviously ambiguous

in the feature space of a query image. Therefore, we reject

matches if their corresponding image side ratio test scores

are smaller than a threshold ϕ. We observe that setting ϕ to

0.3 works well in practice.

Similarly, to evaluate the distinctiveness of a match

within the feature space of a SfM model, we apply the

model side Hamming ratio test as follows:

t′(m) =

∑

j∈P(q) h(sq, sj)

h(sq, sp) |P(q)|
. (2)

Since the term |P(q)|may vary dramatically with using dif-

ferent size of visual vocabularies, here we don’t use it to

penalize a match whose corresponding query descriptor can

establish multiple matches with different 3D points. In ad-

dition, a large SfM model usually contains orders of magni-

tude more descriptors than an image. This makes the model

side Hamming ratio test prone to reject correct matches by
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directly setting a hard threshold. Therefore, we only apply

t′(m) as a soft scoring function to evaluate a match. The

final bilateral Hamming ratio test can be defined as follows:

T (m) =

{

t′(m), t(m) ≥ ϕ

0, otherwise.
(3)

Aggregating Gaussian weighting function. In order

to strengthen the feature distinctiveness, we propose an

adapted version of Gaussian weighting function [16] as fol-

lows:

w(h) =







(σ
h
)
2
e−( h

σ
)
2

, 0.5σ < h ≤ τ

4e−0.25, 0 < h ≤ 0.5σ
0, otherwise,

(4)

where h is the Hamming distance of a match, and σ is usu-

ally set to one quarter of the binary feature dimension [3].

By aggregating the Gaussian weighting function, the score

for a match m therefore can be computed as follows:

E(m) = T (m)w(h(m)). (5)

Overall, we can retain a feature-wise match pool M =
{m|E(m) > 0}, which focuses on preserving correct

matches. We also obtain a set of Feature-wisely Confident

(FC) matchesMFC = {m|E(m) ≥ α} , α > 0.

2.2. Visibility­wise Match Filtering

Given the match setsM andMFC , we describe how to

leverage the visibility information in a SfM model to further

filter wrong matches. In particular, we aim to achieve two

purposes at this stage: 1) to reject wrong matches inM to

retain a visibility-wise match pool that well preserves cor-

rect matches, 2) to select a set of high quality matches that

are substantial to derive an auxiliary camera pose for later

geometry-wise filtering. The visibility information encoded

in a SfM model can be represented as a bipartite visibility

graph G = {P,D, E}. Each node p ∈ P represents a 3D

point, and each node d ∈ D represents a database image.

An edge (p, d) ∈ E exists if point p is observed in database

image d. Intuitively, correct matches usually cluster in the

database images that are relevant to a given query image.

Thus, the problem of match filtering can be transferred as a

problem of finding relevant database images.

Voting with FC matches. Using the visibility graph G,

a 2D-3D match m = {q ↔ p} can cast a vote to each

database image that observes point p. In order to prevent

ambiguous matches from interfering the voting procedure,

we only use FC matches to vote database images. Inspired

from [29], we also enforce a locally unique voting scheme.

Let Md
FC = {m = {q ↔ p} |m ∈MFC , (p, d) ∈ E} be

the FC matches that vote for database image d. We enforce

that a match for database image d can be added to Md
FC

only if its corresponding query descriptor has not appeared

inMd
FC before. In addition, we only consider database im-

ages that receive at least three votes to ensure high relevancy

to the query image. After accumulating the match scores

for a database image, we adopt a term frequency weight in

order to penalize database images that observe a large num-

ber of 3D points. Let Pd = {p|(p, d) ∈ E} be the set of 3D

points that are observed by the database image d, the voting

score can be defined as follows:

S(d) =
∑

m∈Md

FC

E(m)
√

|Pd|
. (6)

A larger voting score inherently indicates that the corre-

sponding database image is more relevant to a given query

image, hence more likely to find correct matches. We first

retrieve top-k ranked database images d(k) with the largest

voting scores. For a match m ∈ M, we select it into the

set Md(k) if its corresponding 3D point is observed in at

least one of the images in d(k). Note that only visibility in-

formation is considered and we preserve both FC and non-

FC matches in Md(k). Similarly, we apply a relaxed cri-

terion by using a larger k1 to select another set of matches

Md(k1), which may contain more correct matches but also

are more noisy thanMd(k). Md(k1) will serve a visibility-

wise match pool and later be filtered in Section 2.3.

Two-step match selection. Naturally, we can define

the matches in Md(k) as Visibility-wisely Confident (VC)

matches. Due to the existence of feature-wisely ambiguous

matches, VC matches may contain a large portion of out-

liers, making them difficult to be directly applied in camera

pose estimation. We propose a two-step match selection

method to filter VC matches. In the first step, we select

the FC from VC matches as Visibility-wisely and Feature-

wisely Confident (VFC) matches that can be defined as fol-

lows:

Md(k)
V FC =

{

m|m ∈Md(k) ∧ E(m) ≥ α
}

. (7)

The VFC matches exhibit high confidence to be correct

since they not only are observed in top ranked database

images, but also are highly distinctive in feature space.

The major difficulty is how to distinguish correct matches

from the rest Visibility-wisely but Not Feature-wisely Con-

fident (VNFC) matches that can be defined asMd(k)
V NFC =

Md(k) \Md(k)
V FC .

During the image voting procedure, we leverage the

point-image relationship in the bipartite visibility graph G.

Now we use the point-point relationship in G to help us filter

the VNFC matches. Intuitively, if a 3D point of one VNFC

match exhibits a strong co-visibility relationship with 3D

points of VFC matches in top ranked database images, it

should be regarded as a potentially correct match. To this
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Algorithm 1 Visibility-wise Match Filtering

Require: Matches M with feature-wise match scores

E(m), match score threshold α

Require: Md(k)
V FC ← ∅,M

d(k)
V FC-I ← ∅,Md(k1) ← ∅

1: /* explore point-image visibility */

2: Apply image voting with FC matches using Eq. 6

3: Retrieve top k and k1 database images d(k) and d(k1)
4: Select all matches in d(k1) as Md(k1) for visibility-

wise match pool

5: Separate VFC matches Md(k)
V FC and VNFC matches

Md(k)
V NFC using Eq. 7

6: /* explore point-point visibility */

7: for all d ∈ d(k) do

8: Compute the number of VFC matches ωd
V FC

9: Compute the number of VNFC matches ωd
V NFC

10: for all m ∈Md
V NFC do

11: Compute the updated match score E
′

(m) using

Eq. 8

12: for all m ∈Md(k)
V NFC do

13: if E
′

(m) ≥ α then

14: Md(k)
V FC-I ←M

d(k)
V FC-I ∪ {m}

15: returnMd(k)
V FC ∪M

d(k)
V FC-I andMd(k1)

end, we engage the second step match selection to infer po-

tentially correct matches from VNFC matches. For each

database image d ∈ d(k), we first count the number of

VFC matches and VNFC matches, which we call ωd
V FC and

ωd
V NFC respectively. If VFC matches occupy a larger por-

tion compared with VNFC matches in one database image,

each VNFC match should receive stronger promotion from

VFC matches respectively. Therefore, for an VNFC match,

we compute its updated match score as follows:

E
′

(m) = E(m) +
∑

d∈d(k)

α

2
ln(1 +

ωd
V FC

ωd
V NFC

). (8)

The larger the updated match score, the more likely that

corresponding VNFC match is correct. Using the previ-

ous match score threshold α, we can select a set of poten-

tially correct matches from VNFC matches. Since these po-

tentially correct matches are mainly inferred by exploring

the visibility information with VFC matches, we call them

VFC-I matches and they can be defined as follows:

Md(k)
V FC−I =

{

m|m ∈Md(k)
V NFC ∧ E

′

(m) ≥ α
}

. (9)

Therefore, the matches that we select from Md(k) are the

union of VFC and VFC-I matches. Algorithm 1 illustrates

the process of visibility-wise match filtering.

2.3. Geometry­wise Match Filtering

In this section, we describe how to use the obtained

VFC and VFC-I matches to compute an auxiliary camera

pose, which facilitates geometry-wise match filtering for the

visibility-wise match poolMd(k1).

Quality-aware spatial reconfiguration. A common way

to estimate the camera pose is to use pose solvers inside

RANSAC loops. The quality of input 2D-3D matches, i.e.

the inlier ratio, is an essential factor for robust and efficient

camera pose estimation. It is also important to ensure that

the input matches have a uniform spatial distribution, espe-

cially when the majority of input matches cluster in a highly

textured region as shown in Fig. 2. Correct matches, rare

but critical, in poorly textured regions are unlikely to be

sampled in the RANSAC hypothesis stage. This will signif-

icantly reduce the localization accuracy due to the difficulty

of obtaining a non-degenerate pose hypothesis.

Our goal is to obtain a set of matches that simultaneously

have a large inlier ratio and a uniform spatial distribution

by selecting from VFC and VFC-I matches. To this end,

we first divide the query image into 4 by 4 equally-sized

bins, denoted as B. The VFC and VFC-I matches are then

quantized into B according to the image coordinates of their

associated 2D query descriptors. To make the spatial distri-

bution of selected matches more uniform, we apply a spatial

reconfiguration method to penalize dense bins with more

quantized matches and emphasize sparse bins with fewer

quantized matches. Let Nb be the number of matches that

are quantized into bin b ∈ B. Let Rb be the proportion of

matches that can be selected from bin b, the spatial recon-

figuration can be realized by computing Rb as follows:

Rb =

√
Nb

∑

i∈B

√
Ni

. (10)

To achieve an efficient camera pose estimation, we limit that

overall at most N matches can be selected. Accordingly, for

each bin b, the match selection quota is RbN .

We first select the VFC matches with larger match scores

according to each bin’s selection quota. After that, if there

exist bins that still do not reach the selection quotas, we

then select the VFC-I matches from these bins. Note that

the VFC-I matches exhibit inferior quality than the VFC

matches because of their confidence in only visibility. To

ensure high quality of selected matches, the VFC matches

should be dominant. Suppose the number of selected VFC

matches is NV FC , we restrict that at most βNV FC VFC-I

matches can be selected. In this work, we set β to 0.33.

Auxiliary camera pose with principal focal length. We

then use the selected matches after quality-aware spatial

reconfiguration to compute an auxiliary camera pose. As-

suming a general scenario when the focal length of a given

query image is unknown, we can adopt a 4-point pose solver
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Match set 1

Match set 2

Figure 2: The influence of a uniform spatial distribution

for matches. Left top: Original match set with 242 inliers

shown in green and 64 outliers shown in cyan (inlier ra-

tio is 0.79), matches are clustered in mountain area; Left

bottom: a selection from original match set by applying

spatial reconfiguration, this selection has 63 inliers and 31

outliers (inlier ratio is 0.67), matches are more uniformly

distributed over the image; Right: Localization error statis-

tics with these two match sets by running 1000 camera pose

estimation trials. Yellow box: the inside correct but sparse

matches are emphasized in match set 2.

(P4P) [5] to estimate the extrinsic calibration and the focal

length. In RANSAC-based camera pose estimation, the es-

timated camera pose usually is the pose hypothesis that is

supported by the largest number of inliers. However, we no-

tice that this strategy becomes unreliable when few correct

matches exist. In such case, a co-planar degenerated sam-

ple may result in that the estimated camera will lie far away

from the scene with an unrealistic focal length. To tackle

this unreliability problem, we propose a statistical verifica-

tion scheme to find a reliable camera pose. Let ε be the

largest number of inliers of a pose hypothesis after running

a certain number of RANSAC+P4P loops. We store the top-

10 pose hypotheses, whose corresponding inliers are more

than 0.7ε. For a successful localization, we notice that most

of the top hypotheses have numerically close focal length

values. These focal length values, instead of the one with

largest number of inliers, provide us a more stable and reli-

able camera pose estimation. Inspired from RANSAC vari-

ants [10] that vote for optimal parameter values, we propose

to select the pose hypothesis whose focal length is the me-

dian value among the top pose hypotheses. We define the

selected pose hypothesis as an auxiliary camera pose, and

its corresponding focal length as principal focal length f .

Filtering with auxiliary camera pose. The computed aux-

iliary camera pose exhibits sufficient accuracy. Using it to

recover potentially correct matches back can further im-

prove the localization accuracy. We apply the auxiliary

camera pose on the visibility-wise match pool Md(k1) to

realize the geometry-wise filtering. We define a relaxed re-

projection error threshold θ in case rejecting potentially cor-

Table 2: Summarization of the used datasets.

Dataset
Database

Images

3D

Points

Query

Images

Dubrovnik [22] 6,044 1.89M 800

RobotCar Seasons [33] 20,862 6.77M 11,934

Aachen Day-Night [33] 4,328 1.65M 922

SF-0 [21, 34] 610,773 30M 442

rect matches. As such, a match can be selected as a poten-

tially correct match if the re-projection error with respect

to the auxiliary camera pose is below θ. In this work, we

choose a threshold of 10 pixels.

Final camera pose estimation. The matches selected by

the auxiliary camera pose exhibit both high quality and high

quantity. In addition, we have also obtained a reliable focal

length value f . Based on these, we can directly apply a 3-

point pose solver (P3P) [20], which is much more efficient

than 4-point pose solvers, to compute the final camera pose.

3. Experiments

3.1. Datasets and Evaluation Metrics

We evaluate our proposed method on four benchmark

datasets as summarized in Table 2. For the Dubrovnik

dataset, we adopt the same evaluation metric used in re-

lated works [6, 22, 23, 30, 31, 37, 41]. A query image is

considered as successfully registered or localized if the

best camera pose after RANSAC has at least 12 inliers.

The localization accuracy on the Dubrovnik dataset can be

measured as the distance between estimated camera cen-

ter position and the ground truth camera center position of

query image. The RobotCar Seasons [33] dataset was re-

constructed from images that were captured with cameras

mounted on an autonomous vehicle. This dataset covers a

wide range of condition changes, e.g. weather, seasons, day-

night, which make image-based localization on this dataset

challenging. The ground truth camera poses of query im-

ages were obtained by aligning all 49 SfM sub-models to

LIDAR point clouds. The query images of the Aachen

Day-Night dataset consist of 824 images in day condition

and 98 images in night condition. For the RobotCar Sea-

sons and Aachen Day-Night datasets, we follow the evalu-

ation metric in [33] and report the percentage of query im-

ages localized within Um and V ◦ from ground truth camera

poses. To evaluate under different levels of localization ac-

curacy, we use the three accuracy intervals defined in [33]

as follows: High-precision (0.25m, 2◦), Medium-precision

(0.5m, 5◦) and Coarse-precision (5m, 10◦). For the large-

scale SF-0 dataset [21], we use the evaluation package pro-

vided by [34] which contains reference camera poses for

442 query images.
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Table 3: The comparison between our method and state-of-

the-art methods on the Dubrovnik dataset.

Method
Error Quartiles [m] Localized

images25% 50% 75%

EGM 0.24 0.70 2.67 794

TC 0.22 1.07 2.99 800

AS 0.40 1.40 5.30 796

Our method 0.22 0.64 2.16 794

3.2. Implementation Details

For the Dubrovnik dataset, we use the same 10k gen-

eral visual vocabulary trained by [31]. For the RobotCar

Seasons and Aachen Day-Night datasets, we train a specific

10k visual vocabulary on all upright RootSIFT descriptors

found in 1000 randomly selected database images in the ref-

erence SfM model. For the large-scale SF-0 dataset, we

train a 50k specific visual vocabulary on all integer mean

RootSIFT descriptors. For the Dubrovnik and RobotCar

Seasons datasets, we set B = 64, τ = 19 and α = 0.8 for

feature-wise filtering. In the visibility-wise filtering step,

we set k = 20 and k1 = 100. In the geometry-wise filtering

step, we set N = 100. For the Aachen Day-Night dataset,

we find that by keeping other parameters unchanged and

setting τ = 16 and k1 = 50 can obtain sufficient correct

2D-3D matches. Due to dramatically different characteris-

tics between large-scale SF-0 and the above three medium-

scale datasets, we adjust B to 128, τ to 32 and α to 0.4

accordingly. For computing the auxiliary camera pose and

the final camera pose, we run both 1000 RANSAC itera-

tions. For a fair comparison on the Dubrovnik dataset, we

use a threshold of 4 pixels for final pose estimation. For a

fair comparison on the RobotCar Seasons and Aachen Day-

Night dataset, we use a 3-point pose solver to compute the

auxiliary camera pose and a threshold of 4 pixels for final

pose estimation. All experiments were conducted with a

single CPU thread on a PC with an Intel i7-6800K CPU

with 3.40 GHz and 32 GB RAM.

3.3. Comparison with State­of­the­art

On the Dubrovnik dataset, we compare against three

prior-free state-of-the-art approaches: Efficient Global

Matching (EGM) [23], Active Search (AS) [31] and

Toroidal Constraint (TC) [6]. On the other three datasets

in which images are captured on the street, we include the

comparison with approaches that use the knowledge about

gravity direction. Concretely, we compare with City-scale

Localization (CSL) [37], Camera Pose Voting (CPV) [41]

and Semantic Match Consistency (SMC) [38]. For com-

prehensiveness, we also compare with two retrieval-based

approaches, namely DenseVLAD [2] and NetVLAD [1].

Evaluation on medium-scale datasets. Table 3 shows the

comparison on the Dubrovnik dataset. As can be seen, our

Table 4: The percentage of query images localized within

three pose accuracy intervals of our proposed method com-

pared with state-of-the-art localization methods on the

RobotCar Seasons and Aachen Day-Night datasets. red and

blue represent the best and second-best methods, and the

asterisk symbol represents using knowledge about the grav-

ity direction.

RobotCar Seasons

All Day All Night

m .25 / 0.5 / 5.0 .25 / 0.5 / 5.0

deg 2 / 5 / 10 2 / 5 / 10

AS 35.6 / 67.9 / 90.4 0.9 / 2.1 / 4.3

DenseVLAD 7.7 / 31.3 / 91.2 1.0 / 4.5 / 22.7

NetVLAD 6.4 / 26.3 / 91.0 0.4 / 2.3 / 16.0

CSL∗ 45.3 / 73.5 / 90.1 0.6 / 2.6 / 7.2

SMC∗ 50.6 / 79.8 / 95.1 7.6 / 21.5 / 45.4

Our method 48.0 / 78.0 / 94.2 3.4 / 9.5 / 17.0

Aachen Day-Night

Day Night

m .25 / 0.5 / 5.0 .25 / 0.5 / 5.0

deg 2 / 5 / 10 2 / 5 / 10

AS 53.7 / 83.7 / 96.6 19.4 / 30.6 / 43.9

DenseVLAD 0.0/ 0.1 / 22.8 0.0/ 2.0 / 14.3

NetVLAD 0.0 / 0.2 / 18.9 0.0 / 2.0 / 12.2

CSL∗ 52.3 / 80.0 / 94.3 24.5 / 33.7 / 49.0

SMC∗ - -

Our method 76.7 / 88.6 / 95.8 25.5 / 38.8 / 54.1

method outperforms state-of-the-art methods in localization

accuracy. In the meantime, we maintain a very competi-

tive effectiveness, i.e., the number of successfully localized

query images. Table 4 shows the percentage of query im-

ages localized within three pose accuracy intervals of our

proposed method compared with state-of-the-art localiza-

tion methods on the RobotCar Seasons and Aachen Day-

Night datasets. Our method achieves the second best lo-

calization performance on the RobotCar Seasons dataset.

Interestingly, our method significantly outperforms CSL

that requires prior knowledge about the gravity direction.

SMC relies on a neural network for semantic segmenta-

tion. Note that the training data used in SMC includes sev-

eral manually labelled images from the original RobotCar

dataset [26]. On the Aachen Day-Night dataset, our method

achieves the best localization performance in most cases.

Memory consumption. We also investigate the mem-

ory consumption required by our method and other meth-

ods. Without losing generality, we only compare against

AS which is the most memory-efficient in state-of-the-art

structure-based localization methods. Table 5 shows the

detailed comparison. Comparing with AS, our method re-

quires significantly lower memory consumption. The rea-

son for the memory reduction is that our method only needs

to store a compact binary signature (8-bytes when B = 64)

per visual word for each 3D point. While AS needs to store
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Table 5: The memory consumption (in GB) comparison be-

tween our method and other state-of-the-art methods.

Method

Memory Consumption

Dubrovnik RobotCar Aachen

AS 0.75 2.72 0.76

Our method 0.14 0.52 0.14
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Figure 3: The experimental results on the SF-0 dataset.

an integer mean (128-bytes) of SIFT descriptors per visual

word for each 3D point. Overall speaking, our method is

memory-efficient and achieves very competitive localiza-

tion performance on medium-scale datasets.

Evaluation on large-scale SF-0. Fig. 3 shows the results

on the SF-0 dataset. We mainly compare with two structure-

based methods: CPV and Hyperpoints [29]. Note that the

SR-SfM scheme in Fig. 3 usually takes several minutes

to process one query image. Comparing with CPV using

full descriptors, our method achieves competitive results for

thresholds of 5m or less. Yet, our method does not per-

form better than Hyperpoints, in which a fine vocabulary is

used and more suitable for large-scale location recognition

problems. In addition, using the GPS tags available in SF-0

would be beneficial to remedy the drawback of our method

for coarse-level localization (5∼30m).

3.4. Ablation Study

We conduct an ablation study on the Dubrovnik dataset

to evaluate the impact of key components in our method.

The match score threshold in the two-step match selection

method is heavily related to the the bilateral Hamming ratio

test. For simplicity, we arguably evaluate these two com-

ponents together. To this end, we first implement a base-

line voting method that filters wrong matches established

from binary signatures. In the baseline implementation, a

match is evaluated by Eq. 4. Then, we select all matches

from top-20 ranked database images for computing the aux-

iliary camera pose, and we select all matches from top-100

ranked database images to obtain the visibility-wise match

pool. Other components in our method remain unchanged.

Table 6: The ablation study conducted on the Dubrovnik

dataset.

Setting
Error quartiles [m] Localized

images25% 50% 75%

Baseline Voting 0.25 0.69 2.19 778

w/o QSR 0.26 0.74 2.53 793

w/o PFL 0.31 0.80 2.70 794

Our full method 0.22 0.64 2.16 794

We test with multiple Hamming distance thresholds in Eq.

4, and the baseline implementation achieves the best perfor-

mance when setting the threshold to 11. As shown in Table

6, our method can localize 16 more query images than the

baseline implementation. This indicates that the combina-

tion of the bilateral Hamming ratio test and the two-step

match selection method is beneficial for better filtering.

We also conduct an experiment to investigate the impact

of the quality-aware spatial reconfiguration (QSR) method

and the principal focal length estimation (PFL) in Section

2.3. We first disable QSR and select the same number of

VFC and VFC-I matches as when QSR enabled. Note that

the matches in QSR disabled are selected with the largest

match scores. As shown in Table 6, QSR significantly im-

proves the localization accuracy. This indicates that obtain-

ing a set of uniformly distributed matches before RANSAC-

based pose estimation is essential for accurate IBL. To ex-

amine the benefit of PFL, we conduct an experiment with

traditional RANSAC scheme when computing the auxiliary

camera pose, i.e. the best camera pose is the one with largest

number of inliers. We can see that PFL also significantly

improves the localization accuracy. This indicates that the

auxiliary camera pose selected with PFL is more robust to

apply geometry-wise match filtering.

4. Conclusion

In this paper, we have presented a cascaded parallel fil-

tering method for memory-efficient image-based localiza-

tion. Our method contains a cascade of feature-, visibility-

and geometry-based filters, in which two parallel criteria are

applied for preserving correct matches and obtaining high

quality matches. The localization accuracy is improved

by quality-aware spatial reconfiguration and principal fo-

cal length methods. Comprehensive experiments on chal-

lenging real-world datasets demonstrate the benefit of our

method. Further improvements could be achieved by incor-

porating CNN-based feature descriptors [11] or hierarchical

localization schemes [27].
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