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Abstract—Haptic interaction is a form of a user-computer 

interaction where physical forces are delivered to the user via 

vibrations, displacements and rotations of special haptic 

devices. When quality of the experience of the haptic interaction 

is assessed, mostly subjective tests using various questionnaires 

are performed. We proposed novel neurocognitive tools for 

assessing both overall experience of the haptic interaction, as 

well as particular time-stamped activities. Our assessment tools 

are based on recognition of emotions and stress obtained from 

Electroencephalograms (EEG). We used them in a feasibility 

study on adding haptic interaction to Skype video conversation.  

Keywords—EEG; neuroscience; user study; haptic interaction 

I. INTRODUCTION 

In computing, haptic interaction, or haptics, is 
implemented by using various haptic devices delivering 
forces to the users through vibrations as well as 
displacements and rotations of haptic actuators. Most 
frequently, desktop haptic devices and game controllers, as 
well as wearable vibrating mini-motors are used.  

As with any other human-computer interaction, to 
evaluate how believable the haptic interaction is, subjective 
or objective Quality of Experience (QoE) user tests are 
normally done. Subjective user tests are performed by filling 
in various questionnaires to evaluate the impact of the overall 
haptic feedback. These questionnaires normally evaluate four 
factors: sensory immersion, comfort, realism, and 
satisfaction. Objective tests are not common and they 
measure changes in physiological state of body such as heart 
rate, respiration rate, body temperature, etc.  

To improve the reliability and quality of the haptic 
experience tests, we propose novel neurocognitive tools 
based on recognition of emotions and stress obtained from 
electroencephalograms (EEG). These EEG-based methods 
can perform measurements of the user performance and 
satisfaction during the haptic interaction at any time interval 
starting from 1/32 sec thus giving objective and time-
stamped feedback of the whole process of interaction. In 
contrast to post-experiment questionnaire-based evaluations, 
the EEG-based tools will not only evaluate the overall 
experience but also show us at which part of the interaction 
the users have become excited or bored, where exactly the 

mental load has got increased or positive emotions have been 
created. We hypothesize that with this approach we will not 
only evaluate the developed software but will also be able to 
actively engage the potential users into the design and 
development phases of various haptic interactions. 

We collected EEG data in a feasibility study on adding 
haptic interaction component to Skype video conversation 
over the internet. We then processed these data and 
compared the obtained results with the results obtained from 
traditional questionnaires. The hypotheses that EEG-based 
methods can be used as objective way of quality assurance of 
haptic interaction was validated. 

II. RELATED WORKS 

A. Subjective and Objective Methods in Haptics 

Common techniques of measuring subjective QoE in 
haptic multimedia applications are based on questionnaires. 
Objective measurements on the other hand obtain 
physiological data of the user to further estimate 
psychological and emotional states. 

Questionnaires are usually the mode of choice in 
subjective evaluation of perception or presence in haptic 
systems. Typically, participants are asked to rank their 
experiences on Likert-type scales. For example, Rehman et al. 
[1] measured user satisfaction by requesting responses to 
seven questions on a 7-point Likert scale. These questions 
demanded feedback regarding acceptance of the system, 
comfort of usage, user interface, trainability, etc. Kim et al. 
[2] evaluated with questionnaires the effects of enhancing the 
movie experience through vibrotactile feedback. Multiple 
factors such as fatigue, usefulness, intuitivism, realism were 
evaluated as a measure of QoE using questionnaires. 
Different questions have been used to acquire user feedback 
through questionnaires however, they are mostly used to 
assess the four factors identified by Danieau et al. [3] namely: 
‘Comfort’ for measuring acceptance of a system, 
‘Satisfaction’ for estimating how enjoyable was the system, 
‘Realism’ for assessing the consistency of the haptic feedback 
with the experience in real world, and ‘Sensory’ for 
describing how much the haptic feedback improved the 
immersion. 



Methods of objective evaluation of haptic perception 
measure the physiological changes which the user 
experiences while using a haptic system. For example, heart 
rate and skin temperature were used by Meehan et al. [4] to 
infer presence in a virtual environment. Similarly, a number 
of physiological features such as heart rate, muscle activity, 
respiration rate, etc. were captured for video game players to 
estimate user experience. The measured change in 
physiological state does not directly reflect QoE but is used to 
determine the changes in emotional state of the user. These 
studies usually chose similar features for physiological 
measurement such as heart rate, skin conductance, facial 
expression, etc. in different virtual environments. In contrast 
to the existing approaches, we propose using neurocognitive 
tools to estimate emotional or psychological state of the users. 
These tools are based on recognizing emotion and stress from 
EEG signals. 

B. EEG-based Methods and Their  Current Uses 

EEG, which measures the brain activity of humans, is 
increasingly popular nowadays. The current EEG devices on 
the market are affordable and comfortable to wear (being 
also wireless), which opens new application areas where 
brain states need to be recognized.  

Emotions and stress are commonly recognized from 
EEG-based brain state. For emotions, dimensional and 
discrete ways for defining the feelings are used. In the 
dimensional way, an emotion is partitioned into three 
dimensions, namely arousal (ranging from calm to excited), 
valence (ranging from negative to positive), and dominance 
(ranging from low in control to full control). Alternatively, 
an emotion can be directly defined by given a label such as 
happy, sad, etc. In either case, the EEG-based emotion 
recognition proves its reliability. In [5], it is shown that by 
extracting power features from 32 channels of EEG data and 
using Support Vector Machine (SVM) as a classifier, four 
emotions can be recognized with 82.37% accuracy. In [6], 
where power feature and SVM were also used, the accuracy 
of 62.07% was achieved for three emotions recognition while 
the channel number was reduced to 16 channels. However, in 
both works offline processing with relatively large amount of 
channels is used while the target of EEG-based emotion 
recognition is to do it in real time and with as few channels 
as possible. In our previous works [7-9], subject-dependent 
emotion recognition algorithms were proposed. We were 
able to recognize positive and negative emotions in real time 
with only five channels, and the best recognition accuracy 
was 92.03% [9]. Higuchi fractal dimension [10], four band 
power features (theta, alpha, beta, theta/beta ratio), statistical 
features [11], and higher order crossings [12] were extracted 
as features and SVM was used as a classifier. It required a 
calibration to be done for each subject before the recognition.  

 Stress refers to the feeling of strain and pressure. It can 
also be recognized from EEG signals. In [13], higher order 
spectra and SVM were used to identify two stress level. In 
[14], the Higuchi's fractal dimension of EEG, Gaussian 
mixtures of EEG spectrogram, and Magnitude Square 
Coherence Estimation (MSCE) between the EEG channels 
were used as features and SVM as well as k-NN were used as 

classifiers. In our previous work [15], by using the 
combination of fractal dimension and statistical features as 
well as by applying the SVM classifier, four levels of stress 
were recognized with the average accuracy of 67.07%.  

Furthermore, in work [17], we analyzed relation between 
mental workload calculated using traditional NASA-TLX 
method and an EEG-based recognition algorithm and found 
out that the data were highly correlated in most of the 
simulations implemented.  

C. Research hypothesis on using EEG-based Method in 

Haptics Quality Experience Evaluation 

Based on the existing ways of using EEG for 
identification of the brain states, we hypothesized that we 
should be able to capture changes of the users’ feelings 
during haptic interaction. Common user questionaries 
evaluating haptic interaction can be used as a reference to be 
interpreted as emotion and stress level. Using time-stamped 
EEG data, we will also be able to actively engage the 
potential users into the design and development phases of 
various haptic interactions. 

To prove the hypothesis, we applied EEG-based methods 
for evaluating a feasibility study on adding haptic interaction 
modality to common audio-video conversation with Skype. 
An experimental protocol has been developed to assess 
various visual and haptic experiences during such 
conversation and tangible interaction over the Internet.  

III. EXPERIMENT SETUP 

A. System Outline 

We used two networked computers placed in to two 
different rooms. Each computer had a Geomagic Touch 
device (a desktop robotic hand used for navigation of 3D 
cursor and delivering forces back to the user) as well as a web 
camera, a microphone and headphones (Fig. 1). 

 

Figure 1. A participant of the experiment engaged in a video conversation 

while communicating motions across the network using a haptic device. 



A TCP/IP connection was established between the two 
computers and the haptic device connected to each of them 
was programmed to follow the other party hand motions. This 
was done by transmitting the haptic device coordinates from 
one computer to another while both computers used the same 
coordinate system. Based on the proximity of the device 
coordinates received over the network to the coordinates 
retrieved from the remote haptic device, the remote computer 
calculated a magnetic force that attracted the haptic interface 
points of the two devices towards each other. In other words, 
a force field existed around the position of each device in the 
coordinate space used. As the two force fields overlapped, the 
remote computer applied the force on the remote device and 
transmitted the inverted force vector to the local computer. As 
a result, motion of a device handle on one computer produced 
the same motion of the remote device handle. A Skype video 
connection was also established between the two computers 
so that the user could see how their hands as well as haptic 
device handles move. Each participant wore an EEG headset 
during the experiment as shown in Fig. 1. 

B. Participants 

We used 10 participants, 9 males and 1 female, aged from 
24 to 55 (M=31.4 SD=8.9). All participants knew each other. 
Two were experienced haptic users while others had little or 
no such experience. In order to diminish the ‘surprise effect’, 
all novice users were given 5 minutes of induction haptic 
exercises. The participants were grouped into 5 pairs based on 
their cultural, educational and language similarities to avoid 
possible emotional tensions that can affect the experiment.  

C. Calibration of EEG-based Recognition 

As both emotion and stress recognition are subject-
dependent algorithms, two calibrations were carried out to 
train the classifiers. The targeted emotions to be recognized, 
while using haptics, are solely linked to different levels of 
valence (ranging from positive to neutral and neutral to 
negative). Thus we selected sound clips from IADS database 
[16] according to their valence ratings to evoke 7 different 
levels of valence. We carried out 7 sessions for emotion 
calibration and each lasted for 52 seconds (a 16 seconds 
silence followed by 6 sound clips with 6 seconds per clip).  

For stress calibration, the Stroop color-word test was 
used. Four sessions were conducted to recognize four 
different levels of stress: absence of stress, low, moderate, 
and high stress. In the first session, the subject had to be 
simply relaxed, i.e. showing absence of stress. In the second 
session, the subject was asked to click the numeric key that 
represented the color of the word shown on the screen (the 
meaning of the word is the same with the color) which was 
supposed to elicit low stress. In the third session, the subject 
had to click the numeric key that represented the color of the 
word shown on the screen while the meaning of the word 
was different from the color (moderate stress). In the third 
session, the subject repeated the previous test but within a 
limited time (high stress). 

The EEG signals of the two calibrations were recorded 
from the 14 channels of the Emotiv EPOC device with a 
sampling frequency of 128Hz and 16 bit A/D resolution. The 

Emotiv EPOC device used is convenient to set up for 
recording, and it provides comparable performance to a 
conventional EEG device at an affordable price [18]. The 14 
electrode positions used are AF3, F7, F3, FC5, T7, P7, O1, 
O2, P8, T8, FC6, F4, F8, AF4, according to the 10-20 
international system. During the recording, the raw EEG 
signals were transmitted wirelesly to the computer. Based on 
our previous work on emotion [7, 8] and stress recognition 
[15], we extracted the Higuchi fractal dimension [10], band 
power features (theta, alpha, beta), and statistical features [11] 
from the EEG data with a sliding window of size of 4 seconds 
and overlapping rate of 75%. Then, the features were fed into 
the SVM classifiers to train models. The models were saved 
and used to identify the brain states of the users while they 
were engaged in haptic interaction. 

D. Procedure 

After familiarization with the haptic devices followed by 
EEG calibration, each pair of the testers was asked to perform 
several activities in a single session which was divided into 
four 5-minute intervals. EEG data was recorded for each of 
the 5 minute intervals. The whole experiment lasted 30-45 
minutes per pair of the participants. 

1. The participants were asked to have a normal Skype 
audio-video conversation, without any haptic feedback. They 
were free to choose the topic and language of their choice.  

2. While continue to be in a video conversation, both 
participants were asked to use the haptic device to exchange 
different hand motions representing handshake, holding hands 
together, vibrations, etc.  

3. One user was asked to lead the conversation by 
being an active haptic user while the other user was asked to 
be a reactive user. The participants were given examples of 
activities that they could perform such as: /1/ to ask the 
reactive user to place his/her hand or finger in a certain 
position while trying to touch it with the remote device, /2/ to 
ask the reactive user to recognize the shape or letter remotely 
drawn by the active user with the device stylus. They could 
also come up with other interaction activities while 
maintaining active-reactive user pattern.  

4. The same as in task 3 but the reversed active-
reactive roles.  

E. Subjective Measurements 

After each activity, the participants were asked to fill up a 

TABLE I.   
SUBJECTIVE EVALUATION QUESTIONNAIRE. QUESTIONS ARE RATED ON A 

FIVE POINT LIKERT SCALE (1-NOT AT ALL, 5-TOTALLY).    

No. Factor Question 

1 Comfort How much was the system comfortable? 

2 Satisfaction How much was the system pleasant to use? 

3 Sensory 
How much did haptic feedback improve the 

interaction? 

4 Realism 
How much did your experiences in the virtual 
environment seem consistent with your real-

world experiences? 

 



questionnaire which was designed to assess the four factors 
discussed in Section II, i.e. Comfort, Satisfaction, Realism 
and Sensory [3]. We considered Comfort, Realism and 
Sensory as measures of ‘Presence’, which is a suitable factor 
to measure the presented scenario of video conversation with 
haptic feedback. Satisfaction is a measure of usability. Other 
factors that estimate usability, such as efficiency and 
effectiveness, were not considered, as the experiment was 
rather open and not designed for performing only a specific 
task. The questions given in Table 1 were rated on a 5-point 
Likert scale.  

The questionnaire for the first interval did not include 
Question 3 and 4 as no haptic feedback was provided. An 
optional question requesting comments was included to each 
questionnaire in the words “Any other comments about  what 
you liked, did not like, or things that should be changed?” 
This was included to get participant feedback for improving 
the design of the system. 

F. Objective Measurement 

The EEG signals of the participants were recorded by 
Emotiv device while they were performing the activities in 
the sessions. Then, the same features were extracted as in the 
calibration, and the trained SVM models were applied to 
identify the emotional and stress states of the subjects during 
the session. 

The obtained brain states were analyzed from two 
perspectives: /1/ an overall emotional state and stress level 
over each 5-minute activity; /2/ detailed emotional states and 
stress levels changes over every 10 seconds in each 5-minute 
activity. The first analysis is to be used to study how brain 
states change from one activity to another. The second 
analysis is to be used to study how brain states change within 
each activity. 

IV. ANALYSIS OF RESULTS 

The data collected through questionnaires with respect to 
the four factors (sensory, realism, comfort and satisfaction) 
has shown that the addition of haptic interaction modality to 
video conversation improves satisfaction. In Fig. 2, the 
normalized mean opinion scores given by participants are 
shown for each interval. Although the level of satisfaction is 
slightly increased with the addition of haptic modality, the 
reported comfort level does not vary significantly across 
different intervals. 

 
Figure 2. Normalized mean opinion score of all participants for the 

experiment with and without the haptic feedback. 
 

Next, we analyzed the questionnaire responses to each 
individual interval. Fig. 3 shows the normalized opinion score 
for the three intervals (Equal, active and passive 
participations) with haptic feedback. The change in mean 
opinion score for realism and sensory factors is insignificant 
across different intervals, hence they are different activities. 

 

Figure 3. Normalized mean opinion score of all participants for different 
intervals of the experiment. 

For objective measurement, the EEG signals of all 
participants were processed to recognize emotional states and 
stress levels in two ways: the first method gives an overall 
averaged emotional state and stress level over each 5-minute 
trial (Fig. 4) and the second method gives the averaged by 10 
seconds values. In Fig. 4, the normalized mean values of 
valence and stress values over each 5-minute interval are 
given. It shows that the participants reach higher average 
valence level (more positive) when they were leading the 
conversion as the “active” haptic users.  For the remaining 
three conditions, the valence levels of emotions are similar. 
As for the stress, it was slightly higher at the beginning of the 
experiment session during conversation without haptic 



interaction. During the next section, it was slightly reduced 
despite that both participants were equally involved in haptic 
interaction and conversation. The lowest stress level 
participants had when they were active haptic participants, 
that is consistent with the finding that they also experienced 
more positive emotions in this activity. As it follows from the 
EEG-based emotion and stress recognition results, the 
additional active haptic interaction could invoke more 
positive emotions and release stress during the audio-video 
conversation.  In Fig. 2 and Fig. 4, the patterns of satisfaction 
(from Questionnaire) and valence (from EEG) for haptic 
active and haptic passive are similar. Most of the participants 
feel more satisfied and more positive during the active haptic 
interaction then during the passive haptic interaction.  

The advantage of EEG-based brain states recognition is to 
provide detailed and quantified measurements during the 
experiment. Thus, in the second analysis, detailed emotional 
states and stress levels changes over every 10 seconds in each 
5-minute trial were calculated. Fig. 5 describes a complete 
interaction process between two participants (subjects 5 and 
6) using continuous changes of emotions (Fig. 5a) and stress 
levels (Fig. 5b) averaged by 10 seconds. Four intervals 
corresponding to 4 sections (each lasts about 300 seconds) are 
split by vertical lines. The first two intervals are traditional 
Skype conversation (0-300 seconds) and equal haptic Skype 
conversation (300-600 seconds). Subject 5 leads the 
conversation as active haptic user in the third interval (600-
900 seconds), and then Subject 6 turns to be an active haptic 
user in the fourth interval (900-1200 seconds). 

 

 

Figure 4. Mean valence and stress levels of all participants in four intervals 

of experiments 

We then interviewed these two participants after the 
experiment. They were experienced haptic users. They 
commented that the second interval of the conversation with 
equal haptic interaction was a little boring for them, since 
they already did it before. However, in the first half of third 
interval, Subject 5 reached very low valence level from 600 to 
750 seconds since he noticed a problem in the haptic 

interaction—navigation of the remote device while looking in 
the video image was not working like looking in a mirror, i.e. 
when moving the handle to the right, it moved to the left in 
the video, and visa versa. His stress level had also raised 
during this period of time. After a short conversation with 
Subject 6, Subject 5 had found a solution around the 800 
second and his valence level increased sharply at this time 
point. During the last time interval, valence of Subject 5 
remained at a high level, meanwhile, stress of Subject 6 
increased to the highest level of the whole conversion since 
he was thinking about the ways of implementing the proposed 
solution. 

Thus, EEG-based emotion and stress recognition 
comparing to traditional questionnaire allows us to do data 
analyses during the task performance. 

 
(a)           

 
(b) 

Figure 5. The changes of emotional state (a) and stress (b) averaged by 10 

seconds over four 5-minute intervals using EEG-based recognition.  

V. CONCLUSION 

We designed and implemented an experiment to study the 
user experience when Skype conversation is augmented with 
haptic interaction. The user study was done in two ways: with 
traditional questionnaire and with novel EEG-based tools. 



The EEG data were recorded during the experiment, and 
valence levels of emotions and stress levels were recognized 
and analyzed. The results of data analyses confirmed that 
active haptic interaction gives more satisfaction to the user 
over passive haptic interaction over Skype. We are planning 
to extend the experiment with more subjects to fully validate 
the hypotheses.  

Although the applied subject-dependent emotion and 
stress recognition algorithms still need further improvement 
in accuracy, including implementing better artifacts removal 
algorithms, the proposed neurocognitive tools for human-
computer interaction study open new possibilities in 
neuroscience based design. The novel tools could be applied 
for both hardware and software assessment in user studies and 
in human factor studies in different applications.  
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