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Abstract

Architectural illustration using line drawing with colorization is an important tool and art format. In this paper, in order to generate
a natural-looking and high quality watercolor-like colorization for architectural line drawing, we propose a novel Generative Ad-
versarial Network (GAN) approach, namely ArchGANs. The proposed ArchGANs unifies a line-feature-aware stylized colorization
network (ArchColGAN), which can learn, predict and generate the coloring based on a dataset, as well as a shading generation
network (ArchShdGAN), which augments the illustration with controllable lighting effects for better depicting building in 3D.
Specifically, ArchColGAN can preserve the essential line features and building part correlation property, it also tackles the uneven
colorization problem caused by the sparse lines. Experimental results demonstrate our proposed method is effective and suitable
for colorization prototyping.
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1. Introduction

“The architectural drawing is the most eloquent tool a profes-
sional has to communicate design ideas. – Paul Rudolph”[1].
Architectural illustration is an important medium to document,
communicate or clarify designs for architects. Line drawing
with colorization (as shown in Fig.1) is an essential and popu-
lar architectural illustration technique. Not only, it is illustrative
and able to present the important information of buildings from
the architect’s engineering prospect, e.g., structure, layout, ma-
terial, color and lighting effects. But also, from the art prospect,
architectural illustration using line drawing with colorization
is an important art format to express an architect’s ideas and
portray artistic architectural concepts. Application-wise, this is
also helpful in demonstrating the essence of a particular build-
ing design for many purposes e.g., design proposal, competi-
tion, marketing and urban planning.

Colorization prototyping is often required in order to test dif-
ferent color schemes and exchange ideas among designers, es-
pecially during the early architectural design phase. For exam-
ple, the colorization is usually achieved based on a line draw-
ing, and watercolor is a popular colorization tool. In this pa-
per, we focus on realizing the watercolor-like colorization pro-
totyping. The conventional manual or semi-manual coloriza-
tion approaches[2] usually require many time-consuming ef-
forts or high art skills. Computer graphics techniques such
as Non-photorealistic rendering (NPR)[3] and physics-based
simulation[4] usually require to craft a particular method or
to spend a high computational effort to achieve a desired ef-
fect. Existing learning-based colorization approaches, based on
given examples or style-transfer[5], are mainly focus on trans-
ferring general visual attributes (e.g. color and texture), thus
they are more suitable to capture the overall visual appearances
and similarities. However, it is not easy for them to well pre-

serve the essential underlying line features, which convey the
basic and key building structure and layout information for ar-
chitectural illustration as well as exhibit representative drawing
style. For example, in Fig.1, the line features are important
as they describe the basic shapes and essential building com-
ponents, and note that the corners usually have line crossings,
which is a typical style for the coordinate reference in a per-
spective drawing.

Besides, these existing approaches are mainly focusing on
2D manga-character-like input lines[6] and outputs. However,
different to these, architectural line drawings usually contain
relatively sparse lines and large empty regions, i.e. for the
purposes to represent walls, roofs and etc.. Such limited line
information can introduce ambiguity and fragmentation when
coloring large empty regions. This often causes the coloriza-
tion results uneven with large blank area and unnatural in
the existing methods. Furthermore, unlike other types of art
(e.g. portrait painting), architectural illustration usually ex-
hibits stronger correlation property between parts, e.g. a row
of windows usually share the same color. However, existing
methods do not directly consider this property.

Moreover, these 2D approaches in general lacks the support
of 3D illustration, however for architectural illustration, adding
lighting effects, which helps to depict a 3D building with differ-
ent colors under different lighting conditions, can be beneficial
to the designers.

In this paper, for an input line drawing image, we propose
a GAN-based stylized watercolor-like colorization method for
architectural illustration. Our method is suitable for effective
colorization prototyping. It has the following main features.

(1) We propose a unified framework ArchGANs for generat-
ing colored building images based on a line drawing with con-
sideration of line features as well as lighting effects. It achieves
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Figure 1: Real architectural illustration examples using line drawing with watercolor colorization.

both the stylized colorization and shading by explicitly mod-
eling the color and lighting effect with two generative adver-
sarial networks (GANs) respectively (namely ArchColGAN and
ArchShdGAN).

(2) We propose ArchColGAN for stylized colorization, which
can learn and predict colors based on the training data, specif-
ically, ArchColGAN is able to preserve the line features well
in the generated architectural illustration by our proposed line-
feature-aware network structure. Our method is able to handle
inputs with sparse lines as well as synthesize the typical line
crossing effect at the corners.

(3) We propose ArchShdGAN for generating the lighting ef-
fects. To facilitate the generation of lighting effects, we intro-
duce two major novel extensions: a diffuse equation represen-
tation of the lighting and a shading loss.

(4) Our proposed ArchGANs is interactive and effective. It al-
lows user to adjust the color scheme and light direction for the
generated architectural illustration. We evaluate our proposed
method through various experiments and demonstrate the ef-
fectiveness and improvements of our method in overall quality
comparing to the conventional methods.

2. Related work

In this section, we review the related work in stylized col-
orization based on Computer Graphics (CG) techniques, Con-
volutional Neural Networks (CNNs), and Generative Adversar-
ial Networks (GANs) respectively.

2.1. CG-based methods

In this subsection, we mainly review CG methods related
to watercolor-like colorization and line drawing. Some com-
mercially available applications provide interactive colorization
tools, such as Corel©Painter[2]. In general, many similar tools
require tedious manual efforts.

Physics-based methods can achieve visually plausible col-
orization results for effects such as watercolor and oil paint-
ing. Curtis et al.[4] proposed to simulate the processes of water
and pigment advection based on fluid simulation. Van Laer-
hoven and Van Reeth[7] and Chu and Tai[8] extended this ap-
proach and were able to created convincing watercolor effects in
real-time with the help of GPU acceleration. However physics-
based method requires high computational cost. The procedural
methods to create colorization are mainly based on analyzing
the image contents and applying many different types of image
filter to simulate brush strokes, for example, Lei and Chang[9]

used a Sobel filter to mimic the darkening effect of the stroke
edges, please refer to the survey[10]. Procedural methods fo-
cus on modeling the appearance of watercolor effect instead of
the physical process of watercolor. To create a watercolor-like
effect for 3D models, Bousseau et al.[3] proposed to combine
a series of image filters placing on 3D rendering results. Luft
and Deussen[11] proposed a watercolor rendering approach es-
pecially for plants. Luft et.al[12] adopted a similar approach to
create a watercolor effect of CAD data. These methods focus
on producing non-photorealistic rendering effect for 3D model-
ings, it is not always easy to design a procedural for a specific
effect.

Line drawing itself is also one NPR effect, i.e., cel-shading or
tone-shading in games such as[13]. The common line drawing
algorithm to render line drawing images from a given 3D model
is based on mathematically defining feature lines as points on
the surface which satisfy certain geometry constraints. There
are many kinds of feature line definitions, e.g., silhouettes, sug-
gestive contours[14], ridge or valley lines[15, 16] and relief
edges[17].

2.2. CNN-based methods

With the rapid development in CNN, it has been proven to
be a powerful technique for a variety of synthesizing tasks[18].
As the pioneering work, Gatys et al.[5] proposed a method to
automatically transfer the style of an artwork to an image. Af-
terwards, a number of works have been proposed to extend the
method. Liao et al. 2017[19] proposed image analogy to im-
prove the image quality. To improve the efficiency, Johnson et
al.[20] proposed perceptual losses and Chen et al.[21] proposed
Stylebank. Chen et al.[22] proposed a extension for video style
transfer. These methods are capable of handling style trans-
fer for many artistic styles such as watercolor and oil painting.
However, they usually focus on transferring textures and colors
in a specific style while preserving the image content, they can
not be directly applied to generate colorization while maintain-
ing line features.

2.3. GAN-based methods

For the purpose of image-to-image translation, a number of
GAN[23] methods have been proposed. Isola et al.[6] pro-
posed the pix2pix approach that based on training with the im-
ages pairs to obtain plausible results for photo-to-label, photo-
to-sketch, and photo-to-map translations. Zhu et al.[24] ex-
tended it to BicycleGAN for multi-modal translation. For
unpaired image translation, a number of GAN methods have
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Figure 2: Main structure of the generator and discriminator networks in the proposed ArchGANs.

been proposed, such as CycleGAN[25], DualGAN[26], Disco-
GAN[27], UNIT[28], and MNUIT[29]. Many methods such
as CariGANs[30], Tag2Pix[31] were also proposed for han-
dling 2D manga-like characters, however unlike these, build-
ing line drawings have sparse and important line features as
well as large empty regions (walls) to be colored evenly. These
GAN-based methods can achieve plausible results, however
they mainly focus on color or texture changes only, such as
horse to zebra, but not explicitly handle the line features, un-
even colorization due to sparse lines as well as lighting condi-
tions for building colorization.

3. Our Method

3.1. Main structure and training dataset

Main structure: Based on an input architectural line drawing,
our method aims to automatically generate a natural-looking
stylized colorization with user specified light direction for ar-
chitectural illustration. To tackle the problems of the inade-
quately preserved line features and building part correlation, the
undesired uneven colorization due to sparse lines, as well as the
lack of plausible depiction of 3D lighting effects, we propose a
new generative adversarial network (GAN) framework, namely
ArchGANs.

We adopt the GAN framework[23]), as it is proven to be suc-
cessful in content generation tasks. Learning-based coloriza-
tion approaches are usually based on many example paired im-
ages of a line drawing with its corresponding colored paint-
ing. However, letting the designers manually create many such
paired building images with different lighting conditions can be
tedious and inefficient, we, therefore, propose to decouple the
overall generation as two GAN branches of the similar archi-
tecture: stylized colorization (ArchColGAN) and lighting effect
generation (ArchShdGAN), as shown in Fig.2. This modular
structure makes our method more flexible.

ArchGANs learns a mapping φ : X → Y from line drawing
domain X to stylized colorization with lighting effects domain Y
in context of architectural illustration. Based on this mapping,
the input architectural line drawing x ∈ X can be colored as the
style with lighting effects as y ∈ Y . We first train ArchColGAN
to learn the translation from line drawing domain X to the do-
main of stylized colorization without lighting effect enhance-
ment YC . In order words, ArchColGAN learns the mapping:

φC : X → YC , for generating a stylized colorization without
lighting effect enhancement yC ∈ YC , based the the input x.

ArchShdGAN learns a mapping φS : YC → YS , for generat-
ing the lighting effect yS ∈ YS . YS denotes the lighting infor-
mation domain for stylized colorization Y . By integrating the
output yS with yC , the final result y can be obtained.
Training dataset: Similarly, it is also tedious and inefficient for
the designer to color every line drawings to generate paring styl-
ized colorization, moreover, there is only a very limited num-
ber of such paired images with desired style available. As such,
it is not easy to construct a training dataset for the network.
Nevertheless, we collected a large number of architectural il-
lustration images and observed that building shapes in general
can be represented or constructed using a set of simpler and
representative building elements: box/cylinder (e.g. building
body/tower), prism/pyramid/cone/hemisphere (e.g. roof), and
the building color schemes also have common patterns, e.g.,
many walls are colored in concrete color (grey) and the roofs
are colored in brick color (dark red). Conceptually, for train-
ing purpose, we can construct the building in a “LEGO" man-
ner. We, therefore, propose to conduct learning based on a set
of simpler building shapes that are constructed by composing
these building elements. By doing so, the training dataset for
building architectural illustration can be more efficiently con-
structed without loss of general representability.

Our training datasets are built based on 10 representative
simpler building shapes constructed from simple building ele-
ments and one most representative color schema. We invite the
artists to paint the representative building elements (e.g box) us-
ing watercolor for the representative colors scheme. We employ
3D software (we use Autodesk 3ds Max in our implementation)
to render the building shapes from 100 directions in order to
generate 1000 line drawings sdata(X) = {x1, x2, . . .} ⊂ X as
well as corresponding colored images without lighting effects
sdata(YC) = {yC

1 , y
C
2 , . . .} ⊂ YC as the training set for ArchCol-

GAN, namely training set A.

Similarly, we select 200 colored images from sdata(YC)
and automatically generate corresponding colored images with
lighting effects under different light directions. In our im-
plementation, we use scripting in Autodesk 3ds Max and we
choose 8 light directions, and the light positions are above the
buildings. As the lighting model, we use point light and Phong
lighting model. As such, we can build sdata(Y) = {y1, y2, . . .} ⊂
Y as the training set for ArchShdGAN, namely training set B.
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For training ArchShdGAN, we utilize only the essential lighting
effect information, which is actually sdata(YC

S ) and sdata(YS ).
In addition, to achieve desired effects, users can also specify

or adjust the colorization and lighting effects.

3.2. Color translation

ArchColGAN: Inspired by the GAN architecture, our proposed
ArchColGAN includes one generator (G, as shown in Fig.3) as
well as two discriminators (D, Fig.4), which are global discrim-
inator (GD) and local discriminator (LD). It has the following
features:

(1) We design the G to achieve both stylized colorization and
inpainting tasks. This means, we let the G to take an input of
a line drawing image with a randomly cut hole, and outputs a
stylized colored inpainted image. By doing so, we increase the
capability of the trained model to handle the detailed building
features such as the corners as well as to learn the correlation
between parts. Conceptually, we model the task of correlating
parts as building connections through synthesizing (inpainting)
local features, meanwhile, the local features can be emphasized,
and hence be better preserved. We set the hole to fit that size of
the important feature (corner) and has a normal distribution of
locations for general coverage.

(2) The proposed G utilizes U-Net, which can capture the im-
portant features, in order to tackle the challenge of maintaining
the line features. Its concatenation functionality improves the
upsampling and the feature reuse, too.

(3) Buildings can have complex shapes, rich and vivid colors,
differences also exist between the training and testing sets, and
the training set is not fully paired (not pixel-to-pixel matches,
some corner features can be missing). These often cause dif-
ficulties in the generator model. In order to be adaptive to
such variations, on top of U-Net, we propose to integrate G
with the cycle-consistency from CycleGAN[25] to enhance its
robustness as well as prevent mode collapse. Essentially, we
further train G with an inverse mapping model F with a cycle-
consistency loss Lcyc(G, F).

(4) The proposed G utilizes a dilated convolution to reduce
the undesired uneven colorization due to sparse lines with the
help of its expanded receptive field. Different from the conven-
tional approach that using ResNet, our G employs a DenseNet
as the transformer in the U-Net, which can enhance the gener-
ation of colors and line features. This also reduces the number
of parameters and increases the feature reuse.

(5) The G consists of LD and GD. LD handles a patch from
the output image from G at the inpainted hole position, while
GD handles the whole output. By doing so, both the local fea-
tures and global consistency can be preserved. Moreover, in-
troducing LD can reduce the undesired uneven colorization by
engaging G to generate better colorization locally instead of just
overall plausible colorization.
Loss: Let G∗, GD∗ and LD∗ denote respective network weights.
To this end, we aim to solve the minimization/maximization
problem that G tries to minimize the objective L(G,GD, LD)

against the adversary GD and LD try to maximize it, as follows:

(G∗,GD∗, LD∗) = arg min
G

max
GD,LD

L(G,GD, LD),

L(G,GD, LD) = Ladv(G,GD, LD) + λLcyc(G, F).

The cycle-consistency loss is defined as:

Lcyc(G, F) = Ex∼sdata(X)[‖F(G(x)) − x‖1]+

EyC∼sdata(YC )[‖G(F(yC)) − yC‖1].

The adversarial loss is defined as:

Ladv(G,GD, LD) =

Ey∼sdata(YC )

[
log

(
GD(yC) + LD(yC

patch)
)]

+

Ex∼sdata(X)

[
log

(
1 −GD

(
G(x)

)
− LD

(
G(xpatch)

))]
.

Implementation: The input to G is a line drawing image of
256 × 256 pixel resolution, with a hole. The hole is of 40 × 40
pixel resolution, its centre position follows the normal distribu-
tion, its boundary has a 5 pixels padding margin to the image
boundary.

As shown in Fig.3, the U-Net of G starts with two Flatten
layers. Each Flatten layer uses a 7 × 7 convolution (Conv) ker-
nel with a step size of one, an instance normalization function
(IN), and a rectified linear unit (Relu) with a fixed size of the
output feature map. Afterwards, three downsampling convolu-
tion blocks, namely encoding blocks, are applied, each consists
of a Conv followed by a Flatten layer for image compressing
and encoding. The useful and important local features can be
fetched for the later translation. This downsampling uses a 3×3
kernel with a step size of two, we double the number of feature
channels each step.

Then the dilated convolution, which allows more area can
be used as input by expanding convolution kernel without in-
creasing learn-able weights. For a 2D layer of C channel h × w
mapping and a next layer of C′ channel h′ × w′, the expanding
convolution operator of each pixel is defined as:

yu,v = σ

b +

k
′

h∑
i=−k′h

k
′

w∑
j=−k′w

Wk′h+i,k′w+ jxu+ηi,v+η j

 ,
k
′

h =
kh − 1

2
, k
′

w =
kw − 1

2
,

where kw and kh are the kernel width and height (odd numbers),
respectively, η is the dilation factor, xu,v ∈ RC and yu,v ∈ RC′

are the pixel component of the input and output of the layer,
σ(·) is a component-wise non-linear transfer function, Ws,t are
C′-by-C matrices of the kernel, and b ∈ RC′ is the layer bias
vector. When η = 1, the equation becomes the standard con-
volution operation. In our implementation, we use η = 2, 4, 8,
respectively.

Afterwards, two dense network blocks (DenseNet-BC) are
employed. There is a 1 × 1 Conv compression layer between
blocks with a compression factor of 0.5. Furthermore, each
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Figure 3: The generator network of ArchColGAN. c of c7 × 7 is conv, d of d3 × 3 is deconv, s is step size, r is dilation factor, same for the other Figures.

Figure 4: The discriminator network of ArchColGAN.

block has 5 layers: an IN, a Relu combined with a 3 × 3 Conv
with a growth rate of k = 32 for each layer, and a bottleneck
layer of the dense network applied beforehand which consists
of an IN function and a Relu combined with a 1× 1 Conv layer.
In order to reduce the amount of input feature maps, thus to
reduce the computational cost, in our implementation, we let
each 1×1 Conv generate 4k feature maps. To this end, we name
the structure that combines 5 layers of IN-Relu-Conv(1 × 1)-
IN-Relu-Conv(3× 3) as a dense network block (DB), and use 2
structures of DB-IN-Relu-Conv(1× 1) as the transformer of the
generator.

Then, we apply three upsampling convolution blocks,
namely decoding block, each block is followed by a Flatten
layer, to reconstruct and output the stylized colorization. The
upsampling convolution is a deconvolution layer with a kernel
of 3 × 3 and a step size of two. The Flatten layer is the same
as the encoding block. At each upsampling step, we reduce
the number of feature channels to half of its previous step. We
then apply the final Conv layer with a kernel size of 3 × 3. We
concatenate the output features of each encoding block and the
output features of its corresponding decoding block as the input
of the respective next decoding block. After this, the cycle-
consistency is applied.

As shown in Fig.4, GD takes the whole generated image of
256 × 256 pixels as the input. It consists of 4 layers of down-
sampling layers (Conv 4×4, step size 2) and a Conv layer (Conv
4 × 4, step size 1). It outputs a 16 × 16 matrix for computing
differences to the real data. The LD has the same structure as
the GD. For LD, we resize the 40 × 40 patch at the respective
inpainted hole location to 60 × 60 as the input and it outputs a
2 × 2 matrix.

Figure 5: The generator and discriminator networks of ArchShdGAN. Note that
r means ResNet here.

Figure 6: Adding lighting effects.

3.3. Lighting effect

ArchShdGAN: Our method is based on the CycleGAN[25] ar-
chitecture with generator and discriminator. Different from the
CycleGAN, which mainly focuses on image-to-image transla-
tion, our proposed ArchShdGAN aims to handle effect-to-effect
translation for lighting effects of buildings. We observe that the
Value channel of the HSV (Hue, Saturation, Value) color space
representation can plausibly depict and represent the general
lighting effect perceived by the viewer. As such, we proposed
to formulate this lighting effect-to-effect translation as a Value-
to-Value translation: YS ≈ YV , YV is the Value attribute.
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Figure 7: Comparison with different methods. From left column to the right: line drawing input images, results generated by VGG, pix2pix, DualGan, CycleGAN,
our method, and an artist using watercolor.

We convert the colored building image (yC) of RGB format
into HSV format, and fetch its Value attribute as the input of
ArchShdGAN, yC

S ≈ yC
V . Its generator has following steps. Af-

ter one flattening layer and two layers of downsampling con-
volution encoding, RasNet is subsequently applied for transla-
tion. Then, two layers of upsampling transposed convolution
followed by one flattening layer are employed to synthesize the
Value attribute. This synthesized Value attribute from the gen-
erator is then inputted to the discriminator, which consists of
four downsampling convolution layers. The loss is computed
and evaluated, incorporating with discriminator to achieve the
adversarial generation for the Value attribute, as shown in Fig.5.

Loss: G∗S , D∗S denote the weights of the generator and dis-
criminator of ArchShdGAN respectively. LS denotes the
loss function. To this end, we aim to solve the minimiza-
tion/maximization problem that GS tries to minimize the objec-
tive LS (GS ,DS ) against an adversary DS that aims to maximize
it, as follows:

(G∗S ,D
∗
S ) = arg min

GS
max

DS
LS (GS ,DS )

LS (GS ,DS ) = LS adv (GS ,DS ) + LS cyc (GS , FS ).

The adversarial loss LS adv is defined as:

LS adv (GS ,DS ) = EyS∼sdata(YS )[log(DS (yS ))]+

EyC
S ∼sdata(YC

S )[log(1 − DS (GS (yC
S )))].

The bidirectional cycle-consistency loss LS cyc is defined as:

LS cyc (GS , FS ) = EyC
S ∼sdata(YC

S )[‖FS (GS (yC
S )) − yC

S ‖1]+

EyS∼sdata(YS )[‖GS (FS (yS )) − yS ‖1].

Concatenation: As the final step, the output yS is concatenated
with the Hue and Saturation attributes of yC and convert to RGB
format as the final resulting image y of stylized colorization and
lighting effect.

4. Result and discussion

Our implementation of the proposed method is based on Ten-
sorFlow framework. We conducted the experiments on a Desk-
top PC with Intel Core i7-7700K CPU and two Nvidia GeForce
GTX1070 GPUs.

We apply our method on a number of representative archi-
tectural line drawings, with several user-defined color schemas.
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(a) (b)

Figure 8: Ablation study. (a) Different color schemas. (b) Different building models.

As a result, in general, we are able to generate visually plau-
sible stylized colorization, as shown in Figures 6, 7, 8, and in
the supplemental material, our method is capable of maintain-
ing line features, reducing unwanted uneven colorization while
augmenting with lighting effects.

As shown in Fig.7 We evaluate our method by comparing
the results with the ground truth colorization which is produced
by a professional artist as well as comparing with colorization
results generated using the state-of-the-art representative GAN
methods, which are VGG[23], pix2pix[6], DualGAN[26], and
CycleGAN[25]. For the input line drawings, we apply the same
color schema as the ground truth. Moreover, we also conduct
a user study for qualitative evaluation. Specifically, the evalu-
ation is conducted from three important aspects, lines, colors
as well as lighting effects. Line evaluation is mainly conducted
in three perspectives: maintaining the line structure, stylizing
and repairing the lines. color evaluation is mainly conducted in
three perspectives: evenly coloring of large walls, color consis-
tency of windows, and distinction between the main building
and the background.

Line evaluation: In general, the line structure of the results by
using VGG network can not be maintained well (Fig.7 column
two). This is mainly because the performance of VGG is highly
dependent on the comprehensiveness of training datasets. How-
ever, in most cases, we could encounter relatively large differ-
ences between the test and training datasets, thus, using VGG
would lead to an unexpected result. VGG tends to perform bet-
ter for the task of transferring textures and colors, however it
can not well preserve the line structure. Different to VGG, the
results of other methods can achieve satisfying results for main-
taining line structure.

In Fig.7 first row, we use the triumphal arch model to demon-
strate the stylized transformation of a line drawing. Note that
the input line drawing should be transformed into a stylized line
drawings with corner crossing features. In architectural draw-
ings, these corner crossings are very common and are largely
used as the references for perspective illustration. As shown in

the figure, in the results of CycleGAN and our method, the cor-
ner crossing features are much clearer, this means better styl-
ized transformation of the lines. However, in the results from
other methods, these features are hardly visible, in other words,
the line drawings are less stylized. This is mainly due to Cycle-
GAN and our method can better handle such local features.
Color evaluation: The first, second and third rows of Fig.7
demonstrate the capability of handling the coloring for large
area walls. It can be seen that, when the wall area is larger,
such as the pillar faces of the triumphal arch in the first row, and
the external walls of the house in the second row, the coloriza-
tion results of using pix2pix, DualGAN and CycleGAN meth-
ods have larger blank areas in the center of the walls, pix2pix
and CycleGAN may generate unwanted red color for the wall
area (third row), such uneven colorization is unnatural and can
degrade the overall perception experiences. On the other hand,
in the result of our method, the colorization of large area wall
is more even, the undesired blank area is reduced.

The fourth and sixth rows of Fig.7 demonstrate the capability
of handling color consistency in windows. Different from other
methods, in the result of our method, the window color (blue)
has higher consistency.

The fifth and sixth rows of Fig.7 mainly assess the distinc-
tion between the foreground (the main building) and the back-
ground. Note that in other methods, the color may leak to the
empty region between building pillars, which is undesired for
colorization.
Lighting effect evaluation: Our results can plausible repre-
sent the 3D effect of the building and the direction of the light
source, as shown in Fig.6, which is mainly with the help of the
ArchShdGAN module in our network structure.
User study: We also conducted a user study using mean opinion
score (MOS) to evaluate our method. We asked 17 participants
with art background to evaluate various colorization results and
give opinion scores. They are asked to evaluate based on the
visual quality and perceptual experience. Twenty ground truth
colorization by artists are provided to the participants for ref-
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erence. The opinion scores are ranging from 5 to 1: 5 (Very
good), 4 (Good), 3 (Average), 2 (Bad), 1 (Very bad). The re-
sults are generated using 8 methods: VGG, pix2pix, DualGAN,
CycleGAN, ArchGANs without LD, ArchGANs without Di-
latedConv (DC), ArchGANs without Shading, and ArchGANs.
For each method, we generated 62 different colorization results.
Each participant evaluated 496 results and we got 8432 scores.
The MOS of the results is shown in Fig.9.

Figure 9: User feedback of the colorization results, in mean opinion score.

From the user study, we learned that ArchGANs without LD
(MOS 2.840) performs worse than the state-of-the-art Cycle-
GAN (MOS 2.995), however, incorporating LD, DilatedConv
and Shading can largely improve the result (MOS 4.261), and
give a better visual experience to the viewer. Component-wise,
adding LD (MOS from 2.840 to 4.261) and DC (MOS from
3.254 to 4.261) are more important components for improving
results comparing to adding Shading effect (MOS from 3.869 to
4.261), this indicates that the users usually are more sensitive to
the color effect such as the evenness of the colorization than the
lighting effect.
Ablation study: To further justify the effectiveness of our
proposed method, we also conducted an ablation study. In
this study, we compare the results from ArchGANs without
LD, ArchGANs without DilatedConv (DC), ArchGANs with-
out Shading, and ArchGANs, using different color schemas
(Fig.8 (a)) and building models (Fig.8 (b)).

From this study, we can observe that our model with LD
and GD is helpful to handle detailed local features such as the
features in the bottom of the building in row one of Fig.8 (b),
adding DilatedConv can further reduce the uneven colorization
in the large walls. Adding the lighting effects can better depict
the building in 3D.

5. Conclusion and future work

In this paper, we have presented ArchGAN, a novel GAN ap-
proach to generate stylized colorization for architectural line
drawing. As the fist component, we have proposed ArchCol-
GAN, through designing it to perform both stylized colorization
and inpainting tasks, utilizing U-Net, and incorporating cycle
consistency, dilated convolution, and two-stage discriminators
(local and global), we can well achieve stylized colorization.
As the second component, we have proposed ArchShdGAN for
lighting effect augmentation. Different from the existing meth-
ods, the proposed method can well support the handling of line
features, even colorization, and lighting effects. The results and
evaluation have demonstrated the effectiveness of our proposed
method.

In the future, we plan to apply the proposed approach in
more scenarios such as animation and movie. We also would
like to extend our method to handle other types of objects and
effects such as plants, streets, sky and shadows.
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