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Abstract

In many 3D applications, building models in polygon-soup representation are commonly used for the purposes of visualization,
for example, in movies and games. Their appearances are fine, however geometry-wise, they may have limited information of
connectivity and may have internal intersections between their parts. Therefore, they are not well-suited to be directly used in 3D
geospatial applications, which usually require geometric analysis. For an input building model in polygon-soup representation, we
propose a novel appearance-driven approach to interactively convert it to a two-manifold model, which is more well-suited for 3D
geospatial applications. In addition, the level of detail (LOD) can be controlled interactively during the conversion. Because a
model in polygon-soup representation is not well-suited for geometric analysis, the main idea of the proposed method is extracting
the visual appearance of the input building model and utilizing it to facilitate the conversion and LODs generation. The silhouettes
are extracted and used to identify the features of the building. After this, according to the locations of these features, horizontal
cross-sections are generated. We then connect two adjacent horizontal cross-sections to reconstruct the building. We control the
LOD by processing the features on the silhouettes and horizontal cross-sections using a 2D approach. We also propose facilitating
the conversion and LOD control by integrating a variety of rasterization methods. The results of our experiments demonstrate the
effectiveness of our method.
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1. Introduction
In various applications, for example, driving simulator,

movie, 3D game, virtual reality and architecture, 3D models of
buildings are largely used for the purposes of visualization. On
the other hand, in various 3D geospatial simulation and anal-
ysis applications, for example, shadow/flood/wind/noise/traffic
simulation and urban management/planning, 3D building mod-
els are also required. Geospatial simulations and queries often
require the full vertex/polygon connectivity information of the
3D building models for the purpose of performing geometric
analysis. Geometric analysis is often conducted on the exterior
of the building model. For instance, in order to query all poly-
gons of the roof of a 3D house, geometric analysis is required.
Similarly, for the flood simulation, when one point (vertex) of
a 3D house model is hit by the flood, in order to get the correct
neighboring vertices, geometric analysis is also required. To
this end, geometry-wise, geospatial applications require suit-
able 3D building models, which are non-self-intersecting and
two-manifold, in order to perform geometric analysis.

Moreover, obtaining a suitable level of detail (LOD) repre-
sentation is an essential geospatial query. The requirement of
LOD for different geospatial applications varies, for example,
wind or flood simulation is usually performed on lower LOD
with the purpose of reducing the high cost of simulation compu-
tation without affecting much the quality of simulation output.
In general, deriving LODs also requires 3D geometric analysis
in order to generate different geometric complexities.

The digital entertainment industry has been growing tremen-
dously. As shown in Figure 1, 3D models of buildings for the

(a) In Assassin’s Creed Unity (game), a scene of Paris

(b) In Grand Theft Auto V (game), Los Santos vs Los Angeles

Figure 1: 3D models of buildings for the purposes of visualization are largely
available.
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Figure 2: (a) This model of building is non-two-manifold. (b) Based on the
ground print, directly performing extrusion to the roof cannot produce this
building.

purposes of visualization are largely available. Utilizing these
models for geospatial applications would be beneficial. 3D
models of buildings for the purposes of visualization are built
with right appearance, however they are mostly in the form of
polygon-soup representation. Thus, they are not well-suited for
geometric analysis. For instance, for the building shown in Fig-
ure 2(a), its pillar is often created only one time. After this,
the pillar is simply copied and put throughout the floor. Even
though the building looks fine from outside, the pillars might
go into or through the roof or floor. This causes the lack of
information for the connectivity between the polygons of the
pillars and the polygons of the roof/floor. That is, in terms of
geometry, the 3D models of buildings for the purposes of vi-
sualization can be meshes in polygon-soup representation, and
they might contain internal self-intersecting components or be-
ing non-two-manifold. Hence, for geospatial applications, such
representation cannot be directly adopted. Meanwhile, due to
the lack of information for polygon connectivity, repairing or
converting them can be challenging. Tedious manual efforts are
usually required for such processes to resolve incorrect connec-
tivity of polygons and self-intersections.

The lack of information for polygon connectivity is also a
problem in LOD computation. This is because computational-
wise, existing LODs generation methods usually process target
geometries explicitly in 3D. Moreover, this 3D computation can
also be tedious and we believe it can be handled in a simpler
manner.

Moreover, existing methods for 3D geospatial building
model generation might cause some of the important features
of the original building to be lost. For instance, for represent-
ing the 3D digital city and building models, CityGML [15] is
a widely adopted format. Nevertheless, for CityGML model
generation, the most common approach is by directly extruding
from the ground print of an input 3D building model to its roof
[20, 57]. This extrusion-based method is not capable of produc-
ing the arc building model as shown in Figure 2(b). Preserving
these representative features (like the arc), which are important
for geospatial simulation and viewing, is essential.

In this research, a novel method is proposed to convert a
3D building model in polygon-soup representation to a model,
which is two-manifold and well-suited for 3D geospatial appli-

cations (for example, in the format of CityGML). In addition,
its LOD can also be controlled interactively during the conver-
sion. The efforts of re-generating existing viewing-ready mod-
els of buildings or fixing the models manually for 3D geospatial
usage can be saved by using our method. Moreover, their lower
LODs, which may be desired by some other applications, can
also be efficiently obtained. The proposed method focuses on
the exterior of the 3D building models. The main features are
as follows.

• Because of the limited information of polygon connec-
tivity, it is difficult to conduct geometric processing on a
model in polygon-soup representation. Nevertheless, since
for a 3D model in polygon-soup representation for visu-
alization purposes, its visual appearance is the most im-
portant attribute, artists have created it in correct appear-
ances. This means, the rendering results (rasterized im-
ages) should be correct. As such, we propose an approach
by extracting and utilizing the visual appearance with the
purpose of facilitating the model conversion and LOD con-
trol by engaging tools of computer graphics, particularly,
the rasterization techniques.
We propose extracting as well as using the following visual
appearances (three types): height map (top view), cross
sections (outer shell) and silhouettes with side depth maps
(side views).

• 3D models of buildings are often standing upright is one
observation which the proposed method is based on. Fur-
thermore, many similarities exist between levels, e.g. level
one and two of a building may be similar. Therefore, in
one building model, multiple similar levels could be rep-
resented using only one cross-section of the building.
The features of the 3D building are identified based on the
building silhouettes, which are computed from side views.
The next step is generating horizontal cross-sections of
the building, which are parallel to the ground, according
to the locations of these features. After this, we connect
these cross-sections to reconstruct the building model. We
also propose generating side depth maps in order to assist
the correspondence computation between adjacent cross-
sections for the connection.

• Another observation which our method is based on is that,
when we view 3D geometries, they are essentially per-
ceived in 2D space, e.g., in screen space. Hence, instead of
processing the complex geometry explicitly in 3D space,
we propose focusing on its perceived 2D visual appear-
ance, which is also an important attribute.
To obtain the desired LOD, we propose processing the
LOD of the computed silhouettes and horizontal cross-
sections in 2D image space.

• The proposed method performs model conversion and
LOD control in one unified framework. Instead of 3D ge-
ometric processing based on the information of polygon
connectivity, the proposed method is realized by 2D image
processing and rasterization methods. As a consequence,
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an arbitrary model of 3D building in polygon-soup rep-
resentation could be converted to a model, which is two-
manifold and well-suited for 3D geospatial usages, with
interactively controllable LOD. In addition, for an arbi-
trary 3D model of a building, the proposed method could
be considered a technique to mend it via ensuring the prop-
erty of two-manifold and fixing internal self-intersections.

The extended contributions comparing to an earlier version
[12] of our work are as follows.

• In this extended version, we add and integrate a new
theme: LOD control, which is an essential geospatial
query. In [12], we focused mainly on the model conver-
sion, we did not address LOD.

• We propose a novel appearance-driven 2D approach for
LOD control. With the same spirit in [12] and as an unified
framework, we tackle the LOD control problem.

• We propose and add a novel method to assist the corre-
spondence computation between cross sections by gener-
ating side depth maps. In [12], we used side maps with-
out depth, for computing the silhouettes only. In this ex-
tended version, depth information is also computed (with-
out adding too much efforts) to help the spatial-hashing-
based correspondence computation, which had difficulties
sometimes in [12].

• We add new results (with LOD control) to demonstrate
the effectiveness of the proposed method (new results as
shown in Figure 9 and LOD control as shown in Figures 8
and 10).

2. Related work

For 3D models of buildings, the related work on model gen-
eration/representation, how to convert between different for-
mats and LOD control, are reviewed in this section.

2.1. 3D building model representation and generation

3D digital models of buildings have a large spectrum of vari-
ous applications. Visualization, computer-aided-design (CAD)
and geospatial application are the main categories of their us-
ages.

2.1.1. 3D models of buildings for visualization purposes
Movies, virtual reality simulators and games are the common

applications for visualization. Polygon representation [31, 27,
29], volumetric representation [21], imagery representation [51,
33] are the major types of representations for 3D models.

In 3D visualization applications, the most commonly used
representation is 3D polygon mesh (for example, FBX, Collada
and OBJ formats). Usually, 3D buildings in polygon repre-
sentation are modeled by 3D modelers using software for 3D
modeling, such as Blender [7], Maya [4] and 3D Max [2].
In addition, to help the creation of 3D buildings in polygon
representation, various automatic tools and software plugins

[50, 38, 21, 45] were already available. They are mainly based
on procedural heuristics. For example, a shape grammar for
procedurally generating buildings was invented by Muller et al.
[50]. To automatically generate buildings, shape grammar and
image processing are combined in the work by Liu et al. [45].
This procedure-based method is well-suited for creating a large
number of buildings, like a city. Nevertheless, the result is of-
ten less realistic but more artificial and might be limited by the
pre-defined rules. 3D reconstruction based on acquisition using
photogrammetry or laser scanning [43, 21] is another important
category. Based on unstructured 3D point clouds, Lafarge and
Mallet [43] proposed an approach for modeling 3D cities based
on minimization of non-convex energy. In the work of Toshev
et al. [54], structures of buildings are detected and parsed based
on the point clouds. A hierarchical and compact representation
can be then constructed. To acquire as well as construct a model
of building from 3D point clouds, the above methods often need
tedious manual and computational efforts.

Impressing viewers is the main purpose for which the 3D
models of buildings for visualization are often modeled, e.g., to
impress game players. The appearance of the models should be
visually immersive and correct. On the other hand, the ease of
performing geometric processing is not the purpose for which
they are modeled. Hence, the properties of incomplete infor-
mation of polygon connectivity and internal self-intersections,
usually exist in the models for visualization purpose. That is,
representation-wise, polygon-soup form is very common for
them.

Therefore, in most real-time applications like games, the
computations like AI query as well as the physics of a game,
are often conducted via another form of representation, that is
simplified as well as dedicated for the ease of computation in
real-time [19, 25], for example, boxes and spheres. Since the
movie and game industries are fast developing, models for 3D
visualization are hugely available. A large number of 3D cities
and buildings, which are very realistic, could be seen in many
3D movies and games. For example, in the game Assassin’s
Creed Unity, the 3D Paris city scene is very realistic (Figure
1(a)). A number of online portals and databases for 3D models
are available [55, 47]. From there, the users can easily access
3D models of buildings created for visualization.

2.1.2. 3D models of buildings for CAD purposes
CAD models of buildings are often for purposes of construc-

tion and architecture design. Professionals like surveyors, civil
engineers and architects, model and use the CAD models. Gen-
erally, professionals use professional CAD software to model
3D CAD buildings, like Rhino [5], SketchUp [24], AutoCAD
[3], and so on.

For CAD models of buildings, besides 3D geometric data,
professionals also create and integrate accurate and detailed
architectural data, like meta semantic information, electri-
cal/piping/structural information, measurement, and so on. In
architecture, building information (BIM) data has been largely
adopted [41, 1]. For BIM data, the format of Industry Founda-
tion Classes (IFC) standard [32] is very popular.
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Currently, 3D printing (additive/layered manufacturing) is a
popular method for prototyping and manufacturing. The con-
ventional 3D printing technique horizontally slices the input
model with evenly separated cross-sections, and rebuilds the
model by layering the cross-sections [8]. However, not ev-
ery model is 3D printable, geometric processing or analysis or
manual remodeling is usually required to pre-process the in-
put model to make it printable. To make a large-scale model
printable, Hao et al. [28] proposed decomposing it into small
components using curvature-based clustering. Luo et al. [48]
proposed a method to automatically separate a large input into
printable parts. Self-intersections and the lack of polygon con-
nectivity information are also difficult problems in 3D printing.

2.1.3. 3D models of buildings for geospatial purposes
For geospatial purposes, the integration of non-geometric

data (like geographical or semantic data) and 3D geometric data
are required for 3D building models. This kind of model usu-
ally can be generated by creating 3D geometric and combining
with geographical data. The common approach for 3D geo-
metric data generation is by acquiring and reconstructing from
LIDAR data, photogrammetry or laser scanned 3D point clouds
[17, 49, 30].

Another important step is combining with geographical data,
like the semantic information of the building (wall, roof), e.g.,
CityGML format [40, 26]. The combination is conducted
according to geographical information like IDs of buildings,
ground prints of buildings and GPS. In terms of size, this kind
of model is often in huge size, e.g., as large as city-scale.
Geospatial queries usually require geometric processing. In or-
der to conduct geometric processing, in general, it is necessary
to have full information of polygon connectivity.

2.2. Conversion of 3D models

For two-way conversion between geospatial data models (for
example, CityGML models) and CAD models (for example,
IFC models), many tools were already developed. CAD mod-
els contain right 3D geometric data and semantic information.
Thus, converting from CAD models to models well-suited for
geospatial purposes is relatively easy [42, 18, 23, 37, 16].

From a geospatial data model such as CityGML, 3D geo-
metric data can be directly obtained. For visualization pur-
poses, such data can be directly applied. However, since meshes
in polygon-soup representation contain only incomplete infor-
mation of polygon connectivity, converting them for geospa-
tial purposes is a difficult problem. To address this problem,
less work has been done. To repair polygonal meshes for
CityGML, Zhao et al. [59, 58] proposed an approach by con-
structing bounding surfaces based on heuristics. But, there
might be some loss in visual appearance and can be limited
by the heuristics. A voxel-based method was proposed in the
work by Donkers et al. [16]. Nevertheless, additional storage
and computation costs are required for voxel-based representa-
tion. Sampling artifacts might also be introduced in this method
when sampling from the input, therefore it is not easy to pre-
serve the shape.

It is often required to have an additional fixing step for the
building model to be cleaned. Generally, existing methods for
repairing are directly performed on the surfaces of the input
models to detect and fix artifacts ([35, 36, 10]). In these meth-
ods, the overall shapes of the models can be preserved. On the
other hand, local continuity is often required in these methods,
that is, only smooth meshes can be handled. But such continu-
ity is usually incomplete in 3D building models, e.g., walls have
often right angles. Thus, for 3D building models, it is not well-
suited to directly apply the methods which are surface-oriented.

2.3. LODs of 3D buildings

LOD is a very popular technique for many applications, such
as games and simulators. Based on the requirement of a spe-
cific task or scenario, the user can choose the desired LOD.
For example, if a game object is very far away from the cam-
era, we can choose a low LOD representation for this game
object. Mesh simplification based on geometric processing is
commonly used in computer graphics applications to generate
LODs. The most common approaches are mesh decimation
[52], progressive meshes [31], quadric error metrics simplifi-
cation [22]. Please refer to a survey in [14]. Moreover, for
geospatial representations like CityGML, which have the infor-
mation of semantics, LODs generation can be performed with
the help of such information [20, 6, 57]. Since the input of our
method can be a 3D polygon-soup mesh, existing geometric
processing based mesh simplification is still difficult to handle
such input. Furthermore, unlike most existing methods which
are based on conducting 3D processing on 3D complex geome-
tries, we think focusing on its viewer-perceived 2D appearance
could be a more efficient approach.

3. Our proposed method

3.1. Basic idea and steps

Given an input of a 3D model of a building in polygon-
soup representation, the goal of this paper is to convert it for
geospatial applications with interactive control over its LOD.
Our work focuses on the exterior (outer shell) of the building,
the interior is not handled. The exterior of the building refers to
the building parts that are visible to an outside viewer, such
as external walls and roofs. The interior refers to the inner
non-visible parts like rooms and furniture. In other words, in
CityGML representation, we are mainly focusing on converting
the polygon-soup model to LOD2-like CityGML model with
roof/wall/ground geometry and relative semantic information.

As mentioned previously, a building model in 3D polygon-
soup representation might have limited information of polygon
connectivity. As such, it is challenging to perform geometric
processing on them. On the other hand, the important and reli-
able information of the polygon-soup building model is its ap-
pearance that is perceived by viewers. Therefore, we propose
extracting the appearance, and we propose achieving this by
computing the outer shell of the building based on rasterization
techniques. In this way, even without geometric processing, we
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Figure 3: The steps of our method.

can still generate models which are well-suited for geospatial
applications.

The silhouettes S of a 3D building model represent its overall
shape: viewers can usually tell a building based on the impor-
tant features F on its silhouettes. Moreover, one of our ob-
servations is that there are usually many similarities between
different levels of a building. Therefore, for the given in-
put polygon-soup building model B, we propose generating its
outer shell Ω(B) by connecting the contours of its horizontal
cross-sections Ω(C) that are derived from n important silhou-
ette features fi ∈ F, (0 ≤ i < n) at certain heights measured
from the ground.

Ω(B) ≈
⋃{

Ω(C f0y
),Ω(C f1y

), . . . ,Ω(C fn−1y
)
}
, (1)

where fiy is the height of silhouette feature fi.
Instead of explicitly processing complex geometries in 3D,

we propose controlling the LOD using a simpler 2D approach.
Similar to the model conversion, the proposed LOD control is
realized by focusing on the 2D appearance perceived by view-
ers: silhouette features and horizontal cross-sections.

As shown in Figure 3, our proposed method integrates model
conversion and LOD control into one unified framework, and it
has five major steps as follows.

1. We align the input 3D model and fix its face normals (Sec-
tion 3.2).

2. We compute the silhouettes of the model and extract their
features. Here, we can control the LOD of the silhou-
ettes. Based on these extracted features, we determine the
heights for computing horizontal cross-sections (Section
3.3). We also compute the respective side depth maps.

3. We compute horizontal cross-sections parallel to the
ground (Section 3.4), and we can also control their LOD.

4. We reconstruct the building by connecting the adjacent
horizontal cross-sections based on the computed side
depth maps (Section 3.5).

5. We compute the height map (roof depth map) from the top
view of the building model and use it to refine the roof of
the building (Section 3.6).

We will present the above steps in the following subsections.

3.2. Model alignment and normal fixing

This pre-processing step is performed as follows.

1. The input building model is aligned, so that its up direction
is aligned with the y axis and its back-front direction is
aligned with the z axis. Since our horizontal cross-sections
will be computed horizontally, thus the model has to be
ensured as standing upright.

2. The face normals are ensured to be pointing outwards from
the model. Since our cross-section computation is based
on face culling, faces have to be facing away from the in-
side.

The above two operations could be easily performed in any pop-
ular modeling tool, such as Maya [4]. As shown in Figure 4, one
pre-processed model of a building is presented.

3.3. Computing silhouettes and side depth maps

Silhouettes represent the vertical features of a building, e.g.,
from the silhouettes we can tell if a building is standing upright
or leaning. We compute the silhouettes in four directions: front
to back/back to front (along the z axis), and left to right/right
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Figure 5: Computing silhouettes: superimposing vertical cross-sections and
computing the contours. Computing side depth map: render depth map from
the outside.

to left (along the x axis). For a regular or near-regular build-
ing (a building whose shape is in general symmetrical and box-
like), silhouettes in four directions are usually sufficient to cap-
ture the important visual appearance of the building from side
views. Many buildings also exhibit symmetrical property, thus
silhouettes from a small number of directions is sufficient. If the
building is non-regular and contains important visual features in
many different directions, then we need to compute the silhou-
ettes from more directions. Our silhouette computation algo-
rithm for one direction consists of the steps (Figure 5) shown in
Algorithm 1. Note that we introduce the main algorithm first,
then the detailed respective techniques (Sections 3.3.1 to 3.3.3),
which are shared in the later sections.

3.3.1. Cross-section computation method
We employ the stencil buffer [34] based algorithm to ob-

tain cross-sections. This stencil buffer can control if a pixel is
rasterized and its related operations are commonly available in
graphical APIs like DirectX and OpenGL (we use OpenGL 4.6
in our implementation). We use orthogonal projection for all
our rendering based techniques (Sections 3.3, 3.3.1 and 3.3.3),
therefore we will not encounter perspective distortion. Please
refer to Algorithm 2 for the algorithm. The basic idea is to
mask the back faces using the front faces with the help of sten-
cil buffer, the remaining back faces represent the cross-section,
in other words, the cap of the clipped model. For performing
post-processing antialiasing, we apply FXAA [46]. The pix-

Input: One direction, one 3D building model.
Output: 2D silhouette with side depth map, with

respect to the input direction.

1. We compute some vertical cross-sections (in our
experiments, we compute 20 vertical cross-sections
uniformly) from the center of the input building
towards the input direction. (Section 3.3.1)

2. We superimpose them to form the silhouette image in
this direction.

3. We compute the contour of the silhouette image and
regard it as the silhouette in this direction. (Section
3.3.2)

4. We render from outside to get a side depth map of the
input 3D building model in this direction (this will be
used later in Section 3.5). We use the most exterior
(nearest to the camera) point in this direction as near
plane and the center as far plane. (Section 3.3.3)

Algorithm 1: Silhouette and side depth map computation

Input: Clipping direction, clipping point, one 3D
building model, depth test is disabled

Output: 2D cross-section

1. To generate one cross-section, we first define the
clipping plane using the clipping point and direction
(the normal of the clipping plane is defined by the
clipping direction) and set the stencil test to always
pass (glStencilFunc(GL ALWAYS, 1, 0xff)).

2. We render the front faces of the model using this
clipping plane and increase the stencil values for the
rasterized pixels in the stencil buffer
(glStencilOp(GL KEEP, GL KEEP, GL INCR)).

3. We render the back faces of the clipped model, and
decrease the stencil values for the rasterized pixels in
the stencil buffer (glStencilOp(GL KEEP, GL KEEP,
GL DECR)).

4. We render the front faces of the model again, and
rasterize the pixels with a non-zero stencil value in the
stencil buffer (glStencilFunc(GL NOTEQUAL, 0,
¬0)). Those pixels form the cross-section image of that
cutting position.

Algorithm 2: Cross-section computation

elation artifacts because of rasterization can be reduced using
antialiasing.

3.3.2. 2D contour computation method
For an input 2D cross-section image, the contours are com-

puted using the function findContours() (based on [53]) from
OpenCV [9]. With the purpose of getting less number of con-
tour points, the function approxPolyDP() from OpenCV [9]
(based on Ramer-Douglas-Peucker algorithm) are employed to
approximate the contours. We specify a threshold for control-
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Figure 6: Examples of silhouette features.

ling the number of contour points c (we use 1% of arc length as
the threshold in our experiments).

3.3.3. Depth map computation method
By rendering the model from a specified viewpoint, a depth

map can be generated. The distances (depths) from the view-
point to the surfaces of the model are recorded in the map. The
per-fragment depth value we obtained in the fragment shader, is
interpolated between far and near clipping planes linearly, be-
cause all rendering methods in our approach are using orthog-
onal projection. We use 32 bit resolution for our depth maps,
thus each of them can encode 232 values of distance (depth). In
general, in our application, this is sufficient.

3.4. Computing horizontal cross-sections
Our method is based on utilizing and retaining the visual

appearance. Conceptually, the computed silhouettes represent
the vertical features, while the horizontal cross-sections rep-
resent the horizontal features. Assuming we extract m sil-
houettes S j(0 ≤ j < m), the set F of all feature points is
F =

⋃
{F0, ..., Fm−1}, where F j(0 ≤ j < m) is the set of fea-

ture points computed from silhouette S j.
The silhouette feature points are determined as follows. For

each computed silhouette S j (one for each direction), we com-
pute the features (corners) of the contour of this silhouette.
Some examples are shown in Figure 6. The set F j of feature
points (corners) for silhouette S j are computed by detecting the
change in slope (second derivative) around one pixel of the con-
tour of the 2D silhouette. If the change exceeds a threshold (t),
we consider there is a feature at this silhouette pixel.

F j =

d2S jy

d2S jx

> t

 (2)

Note that, S j represents raw pixel values on the silhouette,
and F j represents the feature on the silhouette. Using the
heights of the feature points computed from the silhouettes
( fiy , fi ∈ F), we compute the cross-sections (parallel to the
ground) along the y axis. We use the same cross-section com-
putation method as explained in Section 3.3.1. If two silhouette
features have the same height, we separate them a bit by a small
ε value to make sure all important silhouette features can be re-
tained.

3.5. Connecting horizontal cross-sections
We use the same method as in Section 3.3.2 to compute the

contours with a set of contour points for the horizontal cross-
sections. For a building model, at one direction (with respect

Horizontal
cross
sections

Connecting
cross
sections

...

Figure 7: Horizontal cross-sections generation and connection.

to a silhouette, total four in our experiments, namely z−, z+,
x− and x+), we compute the corresponding contour points be-
tween two adjacent horizontal cross-sections (a lower one and
an upper one) and connect them to form a closed mesh as the
final output (Figure 7). The point correspondence computation
is as follows.

Without loss of generality, we assume that cross-section Cb

(with respect to feature fb on the silhouette) has a greater num-
ber of contour points compared to cross-section Ca (with re-
spect to feature fa on the silhouette). For each contour point
(cbi ∈ Ω(Cb)) of cross-section Cb, we propose applying a depth-
map-based mapping, to find a corresponding point on Ω(Ca).
However, for feature points that are occluded or not visible,
this means the side depth map does not capture their informa-
tion, we then apply a spatial hashing instead to find the nearest
corresponding contour point on cross-section Ca. If the near-
est distance is greater than a threshold γ, we project cbi onto
Ω(Ca). Similarly, for each unmapped point (ca j ∈ Ω(Ca), we
map it onto Ω(Cb).

Depth-map-based mapping: For a contour point (cbi ∈

Ω(Cb)) of cross-section Cb, we first find its corresponding side
depth map. Among the four directions: z−, z+, x− and x+, we
choose the side depth map associated with the direction that has
the minimum angle to vector cbixz

− Oxz, where O is the center
of the model. Suppose the corresponding side depth map of cbi

is associated with z− direction (similar computation for other
directions), we sample the side depth map using (cbix

, fay ) to get
the z value of cbi ’s corresponding point cai′ in Ca, note as zd. As
such, the full 3D coordinates of cai′ are (cbix

, fay , zd).
Spatial-hashing-based mapping: We first normalize these

two cross-sections Ca and Cb, by non-uniformly scaling the up-
per cross-section to align with the lower one in four directions:
z−, z+, x− and x+. If there are multiple subsections in one
cross-section, the normalization is conducted by considering
them as one whole section. Note that this normalization is only
performed for computing correspondences, not for connecting
points to form the output mesh. The scaling factor to scale
cross-section Ca (with respect to feature fa on the silhouette)
to align with cross-section Cb (with respect to feature fb on the
silhouette), in the direction u ∈ {z−, z+, x−, x+}, is computed
based on:

(u fb,max − u fb,min)
(u fa,max − u fa,min)

, (3)
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where u fb,max or min is the u value (right or left) of the respective
boundary (x or z value in the model coordinates) on the silhou-
ette associated with the height of the feature fb. In other words,
we compute the widths of the silhouette at the heights of the
features fb and fa, and scale the cross-section a accordingly.

We explain our projection method using the example of pro-
jecting a point cbi onto contour Ω(Ca). We use spatial hashing
to find cbi ’s nearest corresponding contour point ca j ∈ Ω(Ca).
From ca j ’s two neighboring contour points ca j−1 , ca j+1 , we com-
pute and insert the corresponding point cai′ in Ω(Ca):

cai′ = arg
k

mini′
∥∥∥cbixz

− pkxz

∥∥∥ , 0 6 k 6 1, (4)

pk ∈ {pro jca j−1 ca j
(cbi ), pro jca j ca j+1

(cbi )},

where pro jca j−1 ca j
(cbi ) finds the closest point on line segment

ca j−1 ca j to point cbi .
In the case if two cross-sections are only separated by ε in

height, which means they are very close to each other, and ex-
hibit a large change in the slope on the respective silhouette,
we simply project (simply using the height of another cross-
section) the contour points on the cross-section with a smaller
area to the other cross-section with a larger area. This can be
considered extruding the smaller cross-section onto the bigger
cross-section. To ensure the two manifold property, for the big-
ger cross-section, a constrained Delaunay triangulation can be
performed.

3.6. Roof refinement and conversion completion
Using the same method as in Section 3.3.3, from the top, we

render the input 3D building model to obtain a depth (height)
map. This roof depth map is used to refine the roof (top) of
the connected cross-sections, because roof plays an important
role in many geospatial applications. Instead of letting the roof
vertices placed among various cross-sections, this step is help-
ful to ensure that a roof with vertices grouped together can be
obtained.

From all computed silhouettes, we choose all feature points
at the top. Based on the feature point with the lowest height (y)
value, ftop,min, we apply a cut and ignore the rest of the features.
We duplicate the cross-section corresponding to ftop,min, as the
roof. For each contour point on the roof cross-section, based on
its (x, z) value, we sample the corresponding roof height value
from the roof depth map and use this to lift the roof contour
point accordingly.

In our experiments, we adopt CityGML as the output for-
mat for our conversion. The output is LOD2-like: it has roof,
wall and ground floor geometry as well as relative semantic
information. Other than the roof, to complete the conversion
to CityGML, the bottom (lowest) cross-section of the build-
ing model is triangulated and labeled as the ground floor, and
the outer shell, which is constructed by connecting horizontal
cross-sections (as mentioned in the previous section), is consid-
ered and labeled as the walls.

3.7. LOD control
The proposed LOD control is integrated into the model con-

version framework. It aims to reduce the model complexity

(the input model is regarded as the highest LOD) according to
the need of a specific geospatial application. In other words,
we generate lower LOD from the highest LOD. The proposed
method focuses on 2D appearance as follows.

1. Side view: silhouette LOD (vertical). This LOD controls
the silhouette features (F) for computing cross-sections.

2. Outer shell: cross-section LOD (horizontal). This LOD
controls the contour points of the cross-section to recon-
struct the outer shell.

Lower LOD leads to less number of features/points while re-
taining the important ones as many as possible. These fea-
tures/points are basically features (corners) in the contours. The
essential visual properties of a feature (corner) are its size and
sharpness. A bigger and sharper feature (corner) usually at-
tracts more attention, thus we consider it as more important.
Both two LOD controls mentioned above are using the same
2D technique, which consists of two image processing steps as
follows.

1. Image blurring: we first blur the silhouette or cross-section
contour in order to reduce features (corners) that are rela-
tively small in size even though they can be sharp. We im-
plement this image blurring based on image dilation then
erosion (dilate() and erode() in OpenCV [9]). By setting
the parameters to control the kernel size and number of it-
erations, we can control the LOD in terms of the feature
(corner) size.

2. Corner detection: we then perform corner detection and
ignore features (corners) that are relatively less sharp. We
implement this in Equation 2, by setting the threshold t,
we can control the LOD in terms of the feature (corner)
sharpness.

Note that the contour approximation method (approxPolyDP())
mentioned in Section 3.3.2 acts as an initialization for the con-
tour points. By setting its threshold parameter for the approxi-
mation, we can control the LOD in terms of the overall number
of feature points.

4. Results and discussions

In our experiments, the inputs are polygon-soup 3D buildings
in OBJ format. The conversion outputs are two-manifold mod-
els in CityGML format, which is a popular geospatial data for-
mat. The conversion results of various representative and chal-
lenging models of buildings such as CCTV building (China,
Beijing, Figure 3), Marina Bay Sands (MBS) (Singapore, with
LODs, Figure 8), China Pavilion Expo (China, Shanghai), a
Tower, a Bridge (Figure 9), Temple of ancient Greek, East Gate
(China, Suzhou), Arc de Triomphe (France,Paris, with LODs,
Figure 10), show the effectiveness of our proposed method.
These models were originally created by 3D modelers for vi-
sualization purposes. We adopt the FZKViewer [39] from KIT
to visualize our generated CityGML buildings.

Our method was implemented on a PC with Intel E5 2.6GHz
Xeon CPU, 16.0G RAM and Nvidia K5000 GPU. The rasteri-
zation components of the proposed method were programmed
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Figure 8: Comparison of LODs generation. Upper: our generated different LODs in CityGML format, the numbers of faces are counted in OBJ format which is
converted from the generated CityGML file. Lower: input model and the generated LODs in OBJ format by simplification using quadric error metrics [22], artifacts
are circled in red.

in OpenGL and C++. The other components, like outputting
CityGML, 2D image processing, were programmed in Python.
In our experiments (as shown in Figure 10), each model conver-
sion of building or LODs generation took only 10 to 40 seconds.

Evaluations: (1) Our model conversion approach is eval-
uated by comparing our outputs (e.g. in Figures 3, 8, 9 and
10 (Higher LOD column)) with the input buildings. In these
results, we can observe that the important visual appearances
of the input buildings can be preserved, for example, the gate
shape, the arc shape and the special shape of the MBS build-
ing. However, using the conventional method based on ex-
trusion from ground print to generate CityGML models, it is
often a challenging task to preserve such shapes. Moreover,
our proposed method does not need the information of poly-
gon connectivity to perform geometric processing, therefore it
is capable of dealing with polygon-soup buildings which can
be problematic. For instance, the temple of ancient Greek
model, which contains self-intersections, can be handled using
our method. Our method is also evaluated by checking the two

manifold property in our outputs by loading them to MeshLab
[13]. This property can be ensured in our outputs.

Besides geometry-wise evaluation, it is also important to
evaluate the generated CityGML models from geospatial per-
spective [56]. Besides loading and viewing them using
FZKViewer [39], they are validated using val3dity [44] and the
validation results show: all 3D primitives are valid. They are
also validated using CityDoctor [11] and no errors are observed.

(2) Our LODs generation method is evaluated by comparing
our generated LODs (Figure 10) with the input building mod-
els. We also compare our method with a conventional method,
which is LODs generation by simplification using quadric er-
ror metrics [22] (Figure 8). As shown in Figures 8 and 10,
when reducing LOD, our proposed method is helpful to pre-
serve the important visual appearance. As shown in Figure 8,
our appearance-based method can achieve a comparable sim-
plification result as [22]. Moreover, our method can handle
polygon-soup buildings, which are in general difficult to be pro-
cessed and may produce unwanted artifacts (circled in red in

9



Figure 8) using existing methods, due to the lack of connectiv-
ity information. Furthermore, different from the conventional
methods, our computation is only performed in 2D instead of
3D.

The effectiveness and simplicity of the proposed method al-
low it to be used as a practically useful technique to convert an
arbitrary 3D models of buildings for visualization to 3D models
for geospatial applications while controlling their LODs.

Limitations: Because the proposed method is appearance-
driven based on viewing results and we only compute silhou-
ettes from a certain number of views, some features which are
not visible in these views, may be missed. The silhouettes are
generated in four directions in our experiments. For regular or
near-regular buildings, which are box-like, this is in general suf-
ficient. In order to capture more features, users can choose to
compute silhouettes in more directions. However, in this case,
more computational costs are needed. Similarly, the users can
also choose to increase the number of horizontal cross-sections.

Furthermore, within one horizontal cross-section, the fea-
tures could be complex, this may cause the difficulty of com-
puting the correspondences between adjacent cross-sections. In
the proposed method, the computation of correspondence for
features which are not visible from side views, is still realized
using the nearest matching. Therefore, for buildings containing
twisted walls, the proposed method might not be able to ob-
tain the right correspondences between adjacent cross-sections.
A UI to further refine the correspondence computation can be
provided to the users to resolve this issue.

5. Conclusion and future work

We have proposed an appearance-driven approach to convert
models of buildings in polygon-soup representation to models,
which are two-manifold and suitable for 3D geospatial appli-
cations, as well as to interactively control its LOD. The inputs
were initially modeled with the purposes of visualization. The
difficult task of handling models in polygon-soup representa-
tion with incomplete information of connectivity or internal
self-intersections is tackled by extracting and using the visual
appearances of the models.

We proposed first identifying the feature points of an input
3D building model from its silhouettes generated from a num-
ber of views. According to these feature points, a number of
horizontal cross-sections are then computed. After this, adja-
cent horizontal cross-sections are connected based on the com-
puted side depth map to construct a mesh, which has no inter-
nal self-intersections and is two-manifold. The resulting mesh
is more well-suited for geometric processing hence 3D geospa-
tial usages. In one unified appearance-driven framework, we
also proposed and integrated a LOD control method using a 2D
approach by controlling the details in the silhouettes and hori-
zontal cross-sections.

As a future work, we plan to improve our method to handle
one whole city with a large scale of buildings as the input, cur-
rently, we still need to process the buildings one by one. We
also plan to generalize the proposed approach to deal with dif-
ferent forms of 3D models like vegetation, terrain and furniture.

Input polygon soup models Higher LOD
Our outputs in CityGML format

Figure 9: Some results. Left: input OBJ models in polygon-soup representa-
tion. Right: our results (visualized in FZKViewer [39] from KIT) in the format
of CityGML. Top-down: China Pavilion Expo; A tower; A bridge.

Another possible future work is to utilize the proposed method
in the area of additive manufacturing.
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construction of roofs from sparse lidar point clouds. ISPRS Journal of
photogrammetry and remote sensing 76, 17–29.

[31] Hoppe, H., 1996. Progressive meshes, in: Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, ACM,
New York, NY, USA. pp. 99–108.

[32] Howard, R., Bjork, B.C., 2007. Building information models–experts
views on bim/ifc developments, in: Proceedings of the 24th CIB-W78
Conference, pp. 47–54.

[33] Jiang, N., Tan, P., Cheong, L.F., 2009. Symmetric architecture modeling
with a single image. ACM Trans. Graph. 28, 113:1–113:8.

[34] John Kessenich, Graham Sellers, and Dave Shreiner, 2016. The OpenGL
Programming Guide, in: The OpenGL Programming Guide, Addison
Wesley Professional.

[35] Ju, T., 2004. Robust repair of polygonal models 23, 888–895.
[36] Ju, T., 2009. Fixing geometric errors on polygonal models: a survey.

Journal of Computer Science and Technology 24, 19–29.
[37] Kang, T., Hong, C.H., 2015. Ifc-citygml lod mapping automation based

on multi-processing, in: Proceedings of the 32nd International Sympo-
sium on Automation and Robotics in Construction (ISARC), pp. 1–8.

[38] Kelly, G., Mccabe, H., 2006. A survey of procedural techniques for city
generation 14.

[39] KIT IAI, . FZKViewer.
[40] Kolbe, T.H., 2009. Representing and exchanging 3d city models with

citygml, in: 3D geo-information sciences. Springer, pp. 15–31.
[41] Kolbe, T.H., 2012. Bim, citygml, and related standardization, in: Pro-

ceedings of the 2012 Digital Landscape Architecture Conference, Bern-
burg/Dessau, Germany.

[42] de Laat, R., Van Berlo, L., 2011. Integration of bim and gis: The de-
velopment of the citygml geobim extension, in: Advances in 3D geo-
information sciences. Springer, pp. 211–225.

[43] Lafarge, F., Mallet, C., 2011. Building large urban environments from
unstructured point data, in: 2011 International Conference on Computer
Vision, pp. 1068–1075.

[44] Ledoux, H., 2018. val3dity: validation of 3d gis primitives according to
the international standards. Open Geospatial Data, Software and Stan-
dards 3, 1.

[45] Liu, K., Chen, J., Wang, S., Zhu, X., 2014. Procedural modeling of build-
ings based on facade image segmentation, in: 2014 International Confer-
ence on Audio, Language and Image Processing, pp. 797–801.

[46] Lottes, T., 2009. FXAA, in: NVDIA White Paper.
[47] Louisiana Entertainment, . www.turbosquid.com (visited on 20/11/2019).
[48] Luo, L., Baran, I., Rusinkiewicz, S., Matusik, W., 2012. Chopper: Parti-

tioning models into 3D-printable parts. ACM Trans. Graph. 31.
[49] Malamboa, L., Hahnb, M., 2010. Lidar assisted citygml creation. AGSE

2010 13.
[50] Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L., 2006. Proce-

dural modeling of buildings. ACM Trans. Graph. 25, 614–623.
[51] Poullis, C., You, S., 2009. Photorealistic large-scale urban city model re-

construction. IEEE Transactions on Visualization and Computer Graphics
15, 654–669.

[52] Schroeder, W.J., Zarge, J.A., Lorensen, W.E., 1992. Decimation of trian-
gle meshes, in: ACM siggraph computer graphics, ACM. pp. 65–70.

[53] Suzuki, S., Abe, K., 1985. Topological structural analysis of digitized bi-
nary images by border following. Computer Vision, Graphics, and Image
Processing 30, 32–46.

[54] Toshev, A., Mordohai, P., Taskar, B., 2010. Detecting and parsing archi-
tecture at city scale from range data, in: 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 398–405.

[55] Trimble Inc, . www.3dwarehouse.sketchup.com (visited on 20/11/2019).
[56] Wagner, D., Alam, N., Wewetzer, M., Pries, M., Coors, V., 2015. Methods

for geometric data validation of 3d city models. International Archives of
the Photogrammetry, Remote Sensing & Spatial Information Sciences 40.

[57] Xie, J., Feng, C.C., 2016. An integrated simplification approach for 3d
buildings with sloped and flat roofs. ISPRS International Journal of Geo-
Information. 5, article number:128.

[58] Zhao, J., Ledoux, H., Stoter, J., Feng, T., 2018. Hsw: Heuristic shrink-
wrapping for automatically repairing solid-based citygml lod2 building
models. ISPRS Journal of Photogrammetry and Remote Sensing 146,
289–304.

[59] Zhao, Z., Ledoux, H., Stoter, J.E., 2013. Automatic repair of citygml lod2
buildings using shrink-wrapping, in: ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, pp. II–2/W1, 309–317.

11



Input polygon soup models Our outputs in CityGML format
Higher LOD Mid LOD Lower LOD

30 secs

15 secs

15 secs 11 secs 6 secs

11 secs 6 secs

25 secs 8 secs

Figure 10: Some results. Left: input OBJ models in polygon-soup representation. Right: our results (visualized in FZKViewer [39] from KIT) in different LODs in
the format of CityGML. Top-down: Temple of ancient Greek; East Gate; Arc de Triomphe. The conversion time is also shown.
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