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An Explorative Context-aware Machine Learning Approach to Reducing 

Human Fatigue Risk of Traffic Control Operators  

Abstract  

Traffic control operators are usually confronted with a high potential of human fatigue. 

Existing strategies to manage human fatigue in transportation are primarily by undertaking 

prescriptive “hours-of-work” regulations. However, these regulations lack certain flexibility 

and fail to consider dynamic fatigue-inducing factors in the context. To fill this gap, this study 

makes an explorative first step towards an improved approach for managing human fatigue. 

First, a fatigue causal network that can adequately represent the context factors and their 

dynamic interactions of human fatigue is proposed. Moreover, to overcome its problem of high 

dimension sparse matrix, a novel method based on the artificial immune system and extreme 

gradient boosting algorithm is introduced. A case study of vessel traffic management showed 

that the model could predict the fatigue level with high accuracy of 89%. Furthermore, to lower 

the risk of fatigue occurrence, a novel scheduling algorithm is also provided to adaptively 

arrange work for operators considering individual differences and work types. The study results 

showed that 27% of operators could be rearranged to reduce the possibility of human fatigue. 

Nevertheless, considering that more than half of operator were still fatigue in the case study, 

human fatigue is still a critical problem. It is hoped this research, as an explorative study, can 

offer insightful references to traffic management authorities in their safety management process 

with better operation experience. 
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1. Introduction 

Traffic control operators (TCOs) are people who monitor real-time traffic and provide 

instructions or advice to traffic operators, including pilots, drivers, and train drivers. TCOs’ 

work includes intense information processing and passive monitoring instead of active control 

[1, 2]. Besides, they carry out a clock in shift work to guarantee traffic smoothness, mitigate 

delays, and improve the safety of the traffic network. Such working condition interrupts their 

sleep-wake cycle and degrades sleep conditions, resulting in a high potential of human fatigue 

[3]. Human fatigue is a critical risk, as it causes 15 to 20% of existing transportation accidents, 

affecting all modes of transportation (e.g. road traffic, maritime transport) [4-6]. For instance, 

the National Highway Traffic Safety Administration (NHTSA) reported that drowsy drivers 

had caused almost 100000 crashes per year in the United States of America [7]. Moreover, on 

the railroad, it was found that “operator fell asleep” had often been a contributing cause of 

critical casualties [8], to name a few. Organizations and researchers have advocated work 

schedule improvement as the primary solution to reduce risks of human fatigue [9] and improve 

human performance [10]. They increasingly rely on biomathematical fatigue models to assess 

the likelihood of human fatigue with a given work schedule, as well as to manage the impact 

of shift design [9].  

Those emerging fatigue models are not adequate for TCOs due to the following challenges. 

First, existing models mainly focused on time effects [9] and paid insufficient attention to 

dynamic working conditions. Working conditions of TCOs vary with vehicle types, traffic 

density and weather conditions [11], which usually induce dynamic workload on TCOs rather 

than a stable workload assumed. Second, few models consider individual differences in 

response to fatigue-inducing factors. In fact, due to differences in personality, age, experience, 

etc. [9], one may experience a dramatically different level of human fatigue, comparing with 

others under the same working conditions [12]. 
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Meanwhile, recent studies have shown the necessity and promising benefits of considering 

contextual information in assessing human fatigue [7, 13, 14]. Nevertheless, it has been 

scarcely reported in the context-aware fatigue management area, and several issues still need 

to be further addressed:  

1) What is the contextual information that presents the dynamic working conditions and 

individual differences exhibited by TCOs?  

2) How to deal with numerous and inter-related factors involved in the contextual 

information?  

3) What is the appropriate work arrangement that could reduce the risk of human fatigue? 

For answering these questions, the authors define human fatigue and the scope of this study 

first. Some studies mentioned that there is no clear and widely agreed definition of human 

fatigue [13]. In 2015, Phillips [15] reviewed the definitions of human fatigue and proposed a 

whole definition: Fatigue is a suboptimal psychophysiological condition caused by exertion… 

This whole definition tries to describe all causes of human fatigue, resulting in too much 

information required for establishing a whole fatigue model. Inspired by this whole definition, 

this study limits the scope and defines fatigue as a suboptimal physical, emotional, motivational, 

and cognitive condition caused by a prolonged period of exposure to task-related stimuli. 

Besides, the effects of task-related stimuli would be aggregated or mediated by individual 

resilience, such as experience, age, and gender [16]. With this definition, this work aims to 

contribute to the infertile research area of TCO fatigue and safety by establishing a context-

aware fatigue management approach for TCOs. The causal factors that existed in the contextual 

information are analyzed first and represented by a novel fatigue causal network. Then two 

main modules are developed, fatigue prediction module for assessing human fatigue based on 

context factors, and work arrangement module for arranging each operator to his/her 

appropriate work sector, respectively.  
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The rest of this paper is organized as follows. Section 2 discusses the existing human 

fatigue models, context-aware management techniques and machine learning methods in 

human fatigue management. Section 3 describes the causal factors of human fatigue captured 

in the contextual information, as well as a novel way to represent these factors. Followed by 

this, a proposed context-aware framework, fatigue prediction module, and work arrangement 

module are reported in Section 4. Section 5 presents a case study to validate the proposed 

approach, and a comparative research study is further conducted to depict its superiority among 

existing methods. At last, Section 6 outlines the main contributions and limitations of this work 

and highlights the potential future directions. 

2. Literature review 

This section summarizes relevant literature from two aspects, namely fatigue model, 

context-aware management, and machine learning methods in human fatigue management.  

2.1 Fatigue model 

The existing fatigue models focus on circadian rhythm, using working time and sleep time 

as inputs. In the early 1980s, Borbély [17] proposed a two-process model, Processes S and C 

to understand better and manipulate sleep. Fatigue is generally related to insufficient sleep and 

prolonged work [18], hence many efforts have been made to broaden the applications of the 

two-process model [19] and extended it to fatigue management [20]. The extended models 

have been widely used in civil aviation and nuclear power industries [19-21]. Dawson et al. [9] 

reviewed a series of theoretical models of human fatigue. They indicated that these bio-

mathematical models express work patterns as a sequence of work and non-work periods and 

then use the circadian timing to predict fatigue [20]. 

These fatigue models heavily rely on using hours-of-work as inputs. More factors should 

be considered to achieve reliable results of human fatigue prediction for traffic operators [22]. 
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Recent research works have claimed that integrating causal factors with circadian rhythm 

would be beneficial in managing human fatigue [7, 13, 23]. Strahan et al. [13] recommended 

companies to predict human fatigue based on organizational influence and occupational stress. 

Ji et al. [7] suggested investigating the dynamic aspects of human fatigue by considering 

various casual factors.  

Despite these contributions, limited studies pay attention to investigate context data of 

human fatigue systematically. It is expected that the context-aware techniques can be promising 

and hence summarized below. 

2.2 Context-aware management 

The complex interactions among fatigue-inducing factors highlight the necessity of 

context-aware fatigue management other than relying solely on the hours-of-work [11]. In 

general, the context includes information about the present status of any entity in the 

environment. The goal of context-aware management is to acquire and utilize context 

information to provide appropriate services to specific people at a particular time [24, 25].  

Some context-aware techniques have already been proposed [24, 26-29] and the activities 

on context-aware systems seem to have been increasing dramatically in recent years. For 

instance, Chang et al. [30] predicted taxi demand distributions using time, weather and taxi 

location. Ravi et al. [31] developed context-aware battery management by processing user’s 

location traces and call-logs. Braunhofer et al. [26] developed a context-aware recommender 

system to generate recommendations based on weather conditions and places of interest.  

A considerable number of studies have shown that context-aware techniques could 

improve system performance [24]. Nevertheless, limited studies investigated the potentials of 

developing context-aware fatigue management, let alone one in the transportation fields. 
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2.3 Machine learning in human fatigue management 

In recent years, various machine learning approaches including random forest [32], 

decision tree [33, 34], AdaBoosted decision tree [35], and support vector machines (SVM) [36, 

37] have been applied in human fatigue management. Tango and Botta [36] investigated the 

performances of SVM, linear regression, and neural network on detecting visual distraction 

based on vehicle dynamics data. They found that SVM outperformed all the other machine 

learning methods. Kamalian et al. [35] tested the performance of k-nearest neighbor, decision 

tree and SVM in estimating the human user’s score. Among those machine learning approaches, 

SVM is most widely used in existing literature related to human fatigue management. 

Nevertheless, it cannot thoroughly address the problem of great diversity in human factors data 

[35]. The diversity in human factors data was caused by the diverse causal factors and great 

individual difference. Considering this, the authors proposed to incorporate an artificial 

immune system (AIS) and extreme gradient boosting algorithm (XGBoost) algorithm for 

human fatigue management. 

AIS is a technique that simulates the biological immune system, which is adaptive and 

self-organizing [38]. It has many useful features, such as its ability to adapt and to learn from 

examples and its memorization and generalization capabilities. With these functions, the AIS 

has been successfully used in various fields, and it has even shown better performance than 

artificial neural network fuzzy systems and other approaches [39]. Considering the diverse 

casual factors of human fatigue, adaptive AIS is an appropriate method to preprocess the 

fatigue data. Besides, the fatigue data suffer from the problem of significant individual 

difference. Hence, the XGBoost algorithm is used to predict human fatigue. Primarily, it uses 

an ensemble technique where new models are added to correct the errors made by existing 

models. Models are added sequentially until no further improvements can be made [40]. Owing 
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to this attribute, XGBoost has found to be a suitable way to handle data with individual 

differences [41]. 

3. Network-based fatigue model 

This section provides a discussion in collecting and representing context factors of human 

fatigue. Grandjean [42] suggested considering human fatigue as the level of a liquid in a 

container. Many factors such as the surroundings, work factors, psychic factors, health and 

wellness fill this container and lead gradually to the state of human fatigue. Specifically, the 

surroundings include illumination, climate, and noise. Work factors are the intensity and length 

of manual and mental work. Psychic factors are responsibility, worries, conflicts. Health and 

wellness are assessed by illness, pain, and eating habits. Recovery is the only outflow from the 

container. Based on his study, the context factors of human fatigue are investigated and further 

classified. 

3.1 Context factors of human fatigue 

In the authors’ previous study [16], it has been found that there are four main fatigue-

inducing factors, namely, environment factors, working conditions, circadian rhythm, and 

individual resilience. Hence, the causal factors of human fatigue could be represented as 

{𝐸, 𝑊, 𝐶, 𝐼}, as shown in Figure 1. E is a group of environmental factors, including the factors 

involved in the environment. In the context of traffic control, factors such as weather conditions, 

light level, temperature, visibility, and humidity could be considered as environmental factors. 

W is a group of working condition factors that are involved in a specific task, such as operation 

type, workload, and traffic density. C includes factors that affect circadian rhythms, such as 

time zone, time on task and work shift. Lastly, I refers to the factors which affect a person’s 

response to the other three factors, and it has been found that personalities, experience, gender, 

and age would affect the experience of fatigue [16]. 
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Figure 1. The causal factors of human fatigue 

3.2 Fatigue causal network representation 

Conventionally, {𝐸, 𝑊, 𝐶, 𝐼} can be represented as 𝐶𝐹 = {𝐶1, … , 𝐶𝐻}, where CF refers to 

all these causal factors of human fatigue, as shown in Figure 2(a). There are significant 

correlations among fatigue-inducing factors [43]. Nevertheless, the traditional representation 

fails to consider the inter-relations among causal factors.  

 

Figure 2. Causal factors (CF) representation: (a) conventional causal factors representation; 

(b) fatigue causal network representation 

Causal networks have been used to deal with problems of different domains such as 

philosophy, health and environment and tourism [44]. Principally, a causal network can be used 

to express the inter-relationships among causal factors. Hence, instead of using the 

conventional representation of causal factors, a novel fatigue causal network representation is 

proposed in this work, as shown in Figure 2(b), where 

𝐶𝐹 = [
𝑛𝑒𝑡𝑓11 ⋯ 𝑛𝑒𝑡𝑓1𝐻

⋮ ⋱ ⋮
𝑛𝑒𝑡𝑓𝐻1 ⋯ 𝑛𝑒𝑡𝑓𝐻𝐻

] (1) 
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For h ≠ j, 𝑛𝑒𝑡𝑓𝑗ℎ = {
1              𝑛𝑒𝑡𝑓𝑗  ℎ𝑎𝑠 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑜𝑛 𝑛𝑒𝑡𝑓ℎ .

0        𝑛𝑒𝑡𝑓𝑗  ℎ𝑎𝑠 𝑛𝑜 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑜𝑛 𝑛𝑒𝑡𝑓ℎ .
 ℎ, 𝑗 ∈ [1, 𝐻] 

For ℎ = 𝑗, 𝑛𝑒𝑡𝑓ℎ𝑗 = 𝐶ℎ 

Each column of CF is a principal eigenvector of the effects of the jth element on the hth 

element. For h=j, 𝑛𝑒𝑡𝑓ℎ𝑗  refers to the value of the hth node. 

Though fatigue causal network brings some advantages, several challenges are induced in 

modeling human fatigue. Firstly, the causal network produces high dimension sparse matrix. It 

enlarges the dimension from N to 𝑁 × 𝑁, and this high dimension will result in increased 

computing time. Besides, using the high dimension matrix as an input of the fatigue prediction 

model will require a large amount of training data. Secondly, the heterogeneity of causal factors 

should also be addressed, including both qualitative variables and quantitative variables. 

4. Context-aware fatigue management  

Based on the proposed fatigue causal network, a context-aware machine learning approach is 

proposed to reduce the risk of human fatigue by providing appropriate work arrangements for 

a particular group of people at a specific time. Since the traffic control operations vary with 

traffic patterns, traffic amount and vehicle types, operators of different work sectors may suffer 

from different levels of human fatigue. Therefore, this study intends to arrange specific 

operators to their appropriate work sectors based on the fatigue causal network. Generally, it 

is almost impossible to make a work arrangement, which makes all operators are working at 

their best states, as some work sectors are challenging for all operators. Hence, this study aims 

at reducing the average fatigue level of a group working in the same environment instead of 

individuals. To achieve this aim, the authors predicted fatigue of each operator separately and 

then provided a suitable work arrangement to reduce the average fatigue level of the group.  
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4.1 Framework of context-aware fatigue management 

The proposed context-aware fatigue management has two main parts, namely AIS and 

XGBoost-enabled fatigue prediction (AIS-XGBFP) and adaptive work arrangement, as shown 

in Figure 3. A fatigue causal network represents context information, including working 

conditions, environment, circadian rhythm, and individual resilience. Based on this, an AIS 

and XGBoost-enabled hybrid approach is proposed to handle the fatigue causal network. It can 

make adaptive proactive fatigue predictions to dynamic traffic conditions. Finally, a novel 

work arrangement algorithm is introduced to arrange a group of operators to a set of work 

sectors.  

 

Figure 3. Proposed framework of context-aware fatigue management (I: operator, W: 

work sector) 

4.2 AIS and XGBoost-enabled fatigue prediction  

The AIS-XGBFP has three phases, namely AIS-based pre-processing, XGBoost-based training, 

and predicting. In the first phase, the representative nodes are identified and utilized to simplify 

the fatigue causal network. The values of the representative nodes are determined by using AIS. 
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In the second phase, the XGBoost algorithm establishes the fatigue model based on the refined 

fatigue causal network and corresponding fatigue levels. In the third phase, the fatigue level is 

predicted by the fatigue model. Figure 4 depicts the procedures. The details of each stage are 

summarized below.  

 

Figure 4. Procedures of the AIS-XGBFP 

Phase 1: AIS-based preprocess 

In this phase, the raw data is preprocessed to determine the values of representative nodes 

(Pn), named antibodies in AIS. The raw data are cleaned and structured before preprocessing. 

The first step is to delete noisy data. Specific populations may be less likely to participate in a 

survey even if invited (e.g. elderly operators). What’s more, some participants may be 

unwilling to answer certain questions (e.g. personality, workload). These challenges can result 

in incomplete information/missing data during a questionnaire survey. Thus, questionnaires 

with non-response items are ignored in this research. The second step is normalization. The 

data collected from the questionnaire include categorical variables and numerical variables. 
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For categorical variables, they are encoded into a binary vector using a one-hot encoding. For 

numerical variables, they are normalized first, and further scaled from 0 to 1, so that the value 

of causal factors ranges from 0 to 1. 

The representative nodes are generated based on the fatigue causal network. The causal 

factors that have inter-relations are grouped into one representative node, named antibody in 

AIS. The interrelations between any two causal factors can be obtained from Eq (1). The values 

of the representative nodes are determined according to the training data, named vaccine (Va) 

in AIS. Each introduced training data is presented to the initial representative nodes. By 

comparing the Euclidean distance between the training data and the representative nodes, the 

nodes with the highest similarity to the training data can be identified. Update the value of the 

representative nodes with the mean values of their neighbor training data until the values are 

steady. 

In this way, the fatigue causal network can be refined by the updated presentative nodes. 

Since each node represents several causal factors, the fatigue causal network can be simplified. 

Phase 2: XGBoost-based training 

The refined causal networks with representative nodes are utilized for training the 

XGBoost algorithm, which is implemented using the Python libraries. The XGBoost algorithm 

is trained to predict Fi based on training data, 𝑉𝑎 = < 𝑃𝑛, 𝐹 >. In the training phase, T boosted 

trees are generated to optimize the following objective functions: 

obj =  ∑ 𝑙(𝐹𝑖, 𝐹�̂�
(𝑡)

)

𝐼

𝑖=1

+ ∑ 𝛺(𝑓𝑡)

𝑇

𝑡=1

 (2) 

𝐹�̂� = ∑ 𝑓𝑡(𝑃𝑛)

𝑇

𝑡=1

 (3) 
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, where l is the training loss function, and Ω is the regularization term. The logistic loss function 

is adopted as l in this study. The complexity of the boosted tree is utilized as the regularization 

term. T is the number of boosted tree and f is the function of the boosted tree.  

Phase 3: Testing 

A set of causal factors, named antigen (Ag) in AIS, is utilized to test the proposed method. 

The testing phase involves finding a set of representative nodes that have a high affinity with 

the antigen and then predict the level of human fatigue. The procedures are summarized as 

follows: 

Step 1: For each representative node, computer the affinity between the Ag and Pn. 

Step 2: If the affinity is larger than the predefined threshold α, the Pn is selected. 

Step 3: Repeat Steps 1 to 2 until all Pns are tested. 

Step 4: Predict the fatigue level by using Pns as the input of the XGBoost algorithm. The 

fatigue level can be predicted by reassembling the boosted trees (Eq. 3). 

4.3 Adaptive work arrangement 

An adaptive work arrangement approach is introduced in this sub-section. Following the 

permutation formula, there are 𝑍! ways to arrange Z operators to Z work sectors. The objective 

of the adaptive work arrangement is to figure out an optimized work arrangement based on 

working conditions and individual resilience to mitigate the risk of human fatigue. Hence, the 

problem can be denoted as below, where 

𝑚𝑖𝑛. 𝐹𝑠𝑢𝑚 = ∑ 𝑥𝑔𝑏{𝐸, 𝑊𝑏 , 𝐶, 𝐼𝑏}

𝑍

𝑏=1

, (4) 

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑏 𝑎𝑛𝑑 𝑎 ∈ [1, 𝑍], 𝑊𝑏 ≠ 𝑊𝑎, 𝐼𝑏 ≠ 𝐼𝑎 

𝑓𝑜𝑟 𝑏 ∈ [1, 𝑍], 𝐹𝑏 = 𝑥𝑔𝑏{𝐸, 𝑊𝑏 , 𝐶, 𝐼𝑏} < 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

The fatigue level of every person should not be higher than the threshold. To reduce the 

complexity of working arrangements, the authors propose to divide work sectors into several 
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groups and then conduct work arrangements. Given two tasks 𝑊𝑏 = {𝑤𝑏1, 𝑤𝑏2, … , 𝑤𝑏𝑅} and 

𝑊𝑎 = {𝑤𝑎1, 𝑤𝑎2, … , 𝑤𝑎𝑅}, R is the number of causal factors belonging to working conditions, 

their similarity is calculated based on the following Eq (5): 

𝑆𝑏𝑎 = 1 − ∑(𝑤𝑏𝑟 − 𝑤𝑎𝑟)

𝑅

𝑟=1

/𝑅 (5) 

Classify work sectors into the same group if their similarity was higher than a defined 

threshold . In this way, the complexity of arranging Z operators can be reduced. AIS-XGBFP 

is used to predict the fatigue level of each work arrangement, and the work arrangement with 

the lowest fatigue score will be selected. Algorithm 1 shows the pseudo-code of the proposed 

adaptive work arrangement. The concept of Algorithm 1 is rearranging operators to the other 

work sector where they can keep alert or no change. For example, an operator H working in 

the Coastal sector is fatigued while H is predicted to be alert in the Port sector. If there is 

another operator A working in the Coastal sector. A can keep alter or maintain the same state 

after rearranging to the Port sector. Then operator A and operator H can be switched and well 

arranged in Port sector and Coastal sector, respectively.  

Algorithm 1: Context-aware work arrangement 
Inputs: I: the set of workers {𝐼1, … , 𝐼𝑍} 
 W: the set of grouped tasks {𝐺𝑊1, … 𝐺𝑊𝑄} 
1 𝑆𝑖𝑧𝑒𝑞: the number of slots belonging to 𝐺𝑊𝑞 
2 CP: the set of workers whose task should be rearranged 
3 For all 𝐼𝑧 ∈ 𝐼, 𝐺𝑊𝑞 ∈ 𝑊 
4       𝐹𝑧 = {𝐹𝑧1, … , 𝐹𝑧𝑞 , … , 𝐹𝑧𝑄}  
5 
6 
7 
8 

      Δ𝑧 = 𝑚𝑎𝑥𝐹𝑧 − 𝑚𝑖𝑛𝐹𝑧 
      If Δ𝑧 > 0 
          𝐼𝑧 → 𝐶𝑃 
      end 

9 End 
10 
11 

𝑁𝑎 = 0 
While size (CP)>0 

12 For all 𝐼𝑧 ∈ 𝐼, 𝐺𝑊𝑞 ∈ 𝑊 
13       𝐹𝑧 = {𝐹𝑧1, … , 𝐹𝑧𝑞 , … , 𝐹𝑧𝑄}  
14 
15 
16 

      Δ𝑧 = 𝑚𝑎𝑥𝐹𝑧 − 𝑚𝑖𝑛𝐹𝑧 
      If Δ𝑧 > 0 
          𝐼𝑧 → 𝐶𝑃 
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17       end 
18 End 
19 Rank CP from max to min based on ∆ 
20 For n=1:1:size (CP) 
21        Find 𝐺𝑊𝑎, where 𝐹𝑐𝑝𝑛𝑎 == 𝑚𝑖𝑛𝐹𝑐𝑝𝑛

 
22        𝑁𝑎 = 𝑁𝑎 + 1 
23        If 𝑁𝑎 < 𝑆𝑖𝑧𝑒𝑎 
24           Get{𝐶𝑃𝑛, 𝐺𝑊𝑎} 
25 
26 

          Delete 𝐶𝑃𝑛 from CP & I 
          Update CP 

27        Else 
28           Get{𝐶𝑃𝑛, 𝐺𝑊𝑎} 
29           Delete 𝐶𝑃𝑛 from CP & I 
30           Delete 𝐺𝑊𝑎 from W 
31           Update Δ𝑧 
32 
33 
34 

          Update CP 
       End 
End 

35 End while 
Outputs {CP, GW} the recommended work arrangement 

5. Case Study 

Vessel Traffic Service (VTS) is a shore-side service to guarantee the safe and efficient 

navigation of vessels in the port and coastal area [45]. During field studies, it has been found 

that VTS operators (VTSOs) have a high risk of suffering from human fatigue. Hence, local 

ones are invited to participate in the case study, to validate the effectiveness of the proposed 

context-aware fatigue management. 

The proposed context-aware fatigue management was evaluated from two aspects: the 

performance of human fatigue prediction (Section 5.2) and the performance of adaptive work 

arrangement (Section 5.3). This research adopts accuracy and deviation as performance 

evaluators. Accuracy refers to the proportion of true results, and deviation is indicated by the 

average of the squares of the errors. To evaluate the adaptive work arrangement, the authors 

compared the fatigue levels of the current work arrangement with the recommended work 

arrangement. Furthermore, the changes in the work arrangement were described. 
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Data from local VTS were collected for establishing a fatigue model and described in 

Section 5.1. 

5.1 Fatigue model 

The data about human fatigue and causal factors were extracted from a questionnaire-

based survey. A total of 132 VTS Operators (VTSOs) from the port authority took part in this 

survey. Among these VTSOs, 119 of them are males, and the rest are females, with an average 

working experience of 11 years. The fatigue generation process and sleep quality of sleep 

disorder patients are different from regular operators. Hence, all participants were initially 

screened to eliminate those with sleep disorders. All participants were asked to refrain from 

consuming drugs and coffee before the survey.  

The information about individual resilience, working conditions, environment, and 

circadian rhythm was collected. Following the previous study [16], individual resilience mainly 

refers to demographical variables, personality factors, and physical conditions. In general, 

demographical variables include age, gender, nationality, and experience. Personality factors 

such as extraversion and sensation seeking can be mediating precursors to human fatigue. They 

can be assessed by using the Bortner type A scale, which is a simple self-report scale [46]. The 

Bortner type A scale (Appendix A) includes 14 aspects such as extremes of ambition, 

competitiveness, punctuality, and so on [46]. In this study, physical condition is measured by 

the so-called Fatigue Severity Scale (FSS) [47]. The FSS (Appendix B) has a 9-item self-report 

questionnaire scale that contains nine statements, such as motivation and physical functions. 

The type, intensity, and length of work are critical work-related factors that contribute to human 

fatigue. The type of VTS operations can be defined based on SOLAS Chapter V, Regulation 

12. Primarily, the length of work is indicated by working hours. The intensity of work can be 

assessed by using the NASA Task Load Index (NASA-TLX) scale [48]. NASA-TLX scale 
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assesses workload from six aspects, namely mental demand, physical demand, temporal 

demand, performance, effort, and frustration.  

The environment is a crucial aspect of VTS operations. More specifically, a dim 

environment strains the eyes when monitoring the vessels. Moreover, insufficient lighting and 

warmer core body temperature can promote fatigue [49, 50]. Hence, light and temperature are 

considered in this case study. Some researchers focused on investigating the effects of circadian 

rhythm or the impact of time on task. In practice, these two factors induce human fatigue 

interactively. Thus, time of day, rest after shift, shifts and time on task are studied to indicate 

the level of the circadian rhythm. 

In total, 33 variables were gathered, as shown in Figure 5. Based on that, a fatigue causal 

network (see Figure 5) has been constructed. In terms of human fatigue, the 7-point Samn–

Perelli Fatigue Scale [51] was adopted to evaluate the subjective fatigue level, where ‘1’ refers 

to alert, and ‘7’ refers to fatigued. In total, 705 records of human fatigue were collected, ten 

records of which were discarded due to item nonresponse. The rest fatigue records were utilized 

for training and testing the proposed method. Each fatigue record includes 33 causal factors 

and a corresponding subjective human fatigue level. 
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Figure 5. The fatigue causal network of VTS [16] (FS: The elements of fatigue severity 
(Appendix A). BT: The elements of the Bortner type A (Appendix B).  

5.2 A comparative study of fatigue prediction 

In this section, the proposed AIS-XGBFP was compared with those well-known methods, 

including Decision Tree Regression (DTR), Random Forest Regression (RFR), SVM, and 

Linear Regression (LR). The parameters of DTR, LR, SVR, and RFR were determined by using 

the built-in hyperparameter optimization function of Matlab R2018a. The parameters of the 

AIS-XGBFP were determined as follows.  

According to the research study of Lu et al. [52], the affinity threshold should be set as 0.7 

and the recognition size threshold should be set as 0.2 to guarantee accuracy and limit the 

number of the representative nodes. For the other two parameters, we applied a greedy 

approach to determine their values. In general, the number of boosted trees is set between some 

hundreds and thousands. The maximum depth of a tree is set to four to six to reduce model 

complexity. In this study, the number of boosted trees was decided according to the 

experimental results by setting the value as 500, 1000 and 1500. Similarly, the maximum depth 

of a tree was decided according to the experimental results by setting the value as 3, 4 and 5. It 
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is found that 1000 boosted trees with a depth of 4 can achieve the best performance. Appendix 

C shows how the performance of the decision tree model varies with the leaf number. The 

values of four parameters are shown in Table 1. 

Table 1: Parameters of AIS-XGBFF 
Parameters Value 
Affinity threshold α 0.7 
Recognition pool size threshold β 0.2 
The number of boosted trees 1000 
The maximum depth 4 

 
Table 2: The results of 10-fold cross validation 

Methods AIS-XGBFP LR SVR DTR RFR 
Accuracy 0.89 0.88 0.82 0.84 0.85 
Deviation 0.09 0.26 0.16 0.12 0.10 

Table 2 shows the performance of all these methods in predicting human fatigue. The 

detail results are shown in Appendix D. The AIS-XGBFP showed the highest accuracy and 

lowest deviation.  

Analysis of variance (ANOVA) was conducted to test the performance differences 

between the proposed approach and the other four methods. The statistical analysis was 

conducted in the SPSS software environment (version 19). A 5% significance level was 

adopted in all tests. Table 3 shows a significantly higher accuracy of AIS-XGBFP (p < 0.05) 

compared with the other four methods. Furthermore, compared with SVM and LR, AIS-

XGBFP showed a significant lower deviation (p<0.05) as well. It is quite clear that the stability 

and accuracy of the proposed method are significantly better than the other methods. 

Table 3: Comparison of prediction performance between AIS-XGBFP and the others 
Algorithm Algorithm Sig. (Accuracy) Sig. (deviation) 

AIS-XGBFP DTR .000 .182 
 LR .001 .003 
 RFR .000 .464 
 SVR .000 .000 
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5.3 Adaptive work arrangement 

In this section, the performance of the adaptive work arrangement was tested by 

comparing it with the present work arrangement in local VTS. The fatigue levels of the current 

work arrangement have been collected in Section 5.1. The authors randomly selected 20 sets 

of historical data from the dataset mentioned in Section 5.1. Each set of data was obtained at 

the same time, including information of eight operators, their work sectors, environment, and 

their fatigue levels. In other words, each set of data refers to a current work arrangement and 

corresponding fatigue levels.  

The proposed context-aware fatigue management system was utilized to rearrange each 

current work arrangement, resulting in the recommended adaptive work arrangement. First, the 

work sectors of the local VTS were analyzed. There are eight work sectors in local VTS. In 

other words, eight operators have to work at the same time to provide service to vessels in the 

designated area. According to SOLAS Chapter V, Regulation 12, there are two types of VTS 

operations, namely Port and Coastal. Due to the distinction between the Port and Coastal 

operations, operators performing different operations would suffer from varying levels of 

workload. Hence, the authors classified the works sectors into two groups, Port operations and 

Coastal operations. For eight operators, there are 40320 ways to arrange them to eight different 

work sectors. The result is obtained from the permutation formula A(8, 8)= 8!. After classifying 

the work sectors into two groups, there are 56 ways to arrange them. The result is obtained 

from the combination formula C(8, 3) = 8!/(3!*5!). In this way, the complexity of the work 

arrangement can be reduced. Second, Algorithm 1 was adopted to provide a recommended 

work arrangement. Finally, the fatigue level of the approved work arrangement was obtained 

by AIS-XGBFP. The predicted fatigue level of each operator is “0” or “1”, where “1” means 

fatigued and “0” means alert. 
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Figure 6 shows a comparison of the original work arrangement and the recommended 

work arrangement. The recommend work arrangement can significantly reduce the sum fatigue 

levels of eight operators. As mentioned, 20 sets of historical data were collected. For each 

collection of data, the work sectors were rearranged and compared with the current 

arrangement, resulting in 20 trials. 

The changes in work arrangement are presented in Figure 7. In this case study, rearranged 

operators are the ones whose state can be improved by changing their work sectors. On average, 

the states of 27% operators could be improved by the recommended work arrangement. Figure 

8 presents an example comparing the original work arrangement and the proposed work 

arrangement. In this example, operator A was predicted to be alert for both port and coastal 

operations. Operator H was predicted to be fatigued for coastal operation and alert for port 

operation. Hence, the proposed adaptive work arrangement method suggested to rearrange 

them. Specifically, operator H was arranged to work in the Port sector, and operator A was 

arranged to work in the Coastal sector. 

 
Figure 6. The sum of fatigue levels of eight operations in 20 trials 
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Figure 7. The amount of operators should be arranged in 20 trials 

 
Figure 8. An example comparing the original and the proposed work arrangement 
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In this section, the data collected from the local vessel traffic service center were 
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proposed model may be affected. Specifically, proportionally few females participated in the 

questionnaire-based survey, resulting in biased data for model training. Hence, for female 

participants, the trained model may be over-fitting. Nevertheless, the problem can be mitigated 

by selecting the appropriate affinity threshold. Specifically, the results of the case study show 

that the model trained by the database can achieve an accuracy of 89%. A comparative study 

was conducted to compare the performance of the widely used methods, including DTR, RFR, 

SVM, and LR with the proposed AIS-XGBFP. The AIS-XGBFP showed the highest accuracy 

and lowest deviation. The statistical tests indicated that the proposed fatigue prediction method 

could achieve better performance than other typical machine learning methods. Besides, it was 

found that there existed substantial individual differences in the susceptibility to become 

fatigued, which revealed the necessities of a promising adaptive work arrangement. The case 

study in local VTS indicated that the adaptive work arrangement improve the states of 27% 

operators. By considering individual differences and work types, the novel scheduling 

algorithm can provide adaptive work arrangement to lower the occurrence of fatigue. However, 

most of the operators still suffer from a high possibility of human fatigue with the proposed 

work arrangement. Specifically, Figure 6 shows that only 6 out of 20 trials, where fewer than 

50% of operators are fatigue. Hence, fatigue is still a critical problem in VTS. According to the 

field observation and expert interview, monitoring vessel movements for is monotones and 

quickly induce human fatigue. Adaptive work arrangements can reduce monotones. However, 

the problem of monitoring is still existing.  

6. Conclusion 

In this study, a context-aware fatigue management approach was proposed to mitigate the 

risks of human fatigue in traffic control operators. It consists of two main modules, namely 

AIS and XGBoost-enabled fatigue prediction, and adaptive work arrangement. Experiment 
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results obtained from the case study demonstrated the validity of the two modules. The main 

contributions of this research can be summarized as follows:  

1) A systematic approach to context-aware human fatigue management in traffic control 

centers. In general, this work provides a thorough study from representing context factors of 

human fatigue to rearrange work sectors and serves as a foundation of context-aware fatigue 

management in traffic management authorities. Since human fatigue is a common phenomenon 

in various work settings, this approach could be extended and utilized in these work settings to 

reduce the risks of human fatigue. 

2) The fatigue casual causal network which allows systematically representing various 

factors and the inherent uncertainties associated with these factors was proposed. Based on 

this, a novel fatigue prediction algorithm was developed to consider the contextual factors of 

human fatigue seriously. This module provides a theoretical foundation for scheduling 

individual working time.  

3) An adaptive work arrangement algorithm was proposed to redesign work schedules 

to reduce the risks of human fatigue. By considering individual differences and work types, the 

scheduling algorithm can provide adaptive work arrangements with lower fatigue occurrence. 

Despite their effectiveness of the context-aware fatigue management, some limitations of 

this study still exist. It is expected that a proportion of the working population would have a 

sleep disorder. Nevertheless, sleep disorder operators were not considered in this study. This 

limitation affects the usability of the model in practice. For example, the causal factors were 

collected through questionnaires, subjected from time delay. In the future, context-aware 

fatigue management can take advantage of the current information technologies (e.g. Internet-

of-Things) to efficiently collect contextual information. Meanwhile, the proposed method can 

be implemented in other control room environment, such as the nuclear power industry, 

automation control center via deeply investigating the specific causal factors. Moreover, future 
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works can investigate some interventions to reduce monotones caused by monitoring.  It is 

hoped that this study can contribute to the understanding and implementation of context-aware 

management in the human fatigue field of research and provide insightful guidance to the 

traffic management authorities. 
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Appendix 1 

Appendix A：Fatigue severity scale 2 

Items Descriptions 

FS 1 My motivation is lower when I am fatigued.  

FS 2 Exercise brings on my fatigue. 

FS 3 I am easily fatigued. 

FS 4 Fatigue interferes with my physical functioning. 

FS 5 Fatigue causes frequent problems for me. 

FS 6 My fatigue prevents sustained physical functioning. 

FS 7 Fatigue interferes with carrying out certain duties and responsibilities. 

FS 8 Fatigue is among my most disabling symptoms. 

FS 9 Fatigue interferes with my work, family, or social life. 

3 
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Appendix B: The Bortner type A scale 4 

Item Descriptions Scale Descriptions 

BT1 Never Late 1     2      3      4      5      6      7 Causal about appointments 

BT2 Not competitive 1     2      3      4      5      6      7 Very competitive 

BT3 Anticipates what others 

are going to say 

1     2      3      4      5      6      7 Good listener, hears others out 

BT4 Always rushed 1     2      3      4      5      6      7 Never feels rushed, even under 

pressure 

BT5 Can wait patiently 1     2      3      4      5      6      7 Impatient when waiting 

BT6 Goes “all out” 1     2      3      4      5      6      7 Causal 

BT7 Takes things one at a 

time 

1     2      3      4      5      6      7 Tries to do many things at once 

BT8 Emphatic in speech 1     2      3      4      5      6      7 Slow, deliberate talker 

BT9 Wants good job 

recognized by other 

1     2      3      4      5      6      7 Only cares about satisfying 

himself no matter what others 

may think 

BT10 Fast 1     2      3      4      5      6      7 Slow doing things 

BT11 Easy going 1     2      3      4      5      6      7 Hard driving 

BT12 ‘Sits’ on feelings 1     2      3      4      5      6      7 Expresses feelings 

BT13 Many interests 1     2      3      4      5      6      7 Few interests outside work 

BT14 Satisfied with job 1     2      3      4      5      6      7 Ambitious 

5 
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Appendix C: Performance of decision tree in fatigue prediction vs min leaf size 6 
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Appendix D: The 10-fold cross validation results of testing data for each algorithm (Accuracy) 8 

9 Data 

source 

Algorithm Trial 

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 

Trial 

6 

Trial 

7 

Trial 

8 

Trial 

9 

Trial 

10 

Ave. 

All LR 0.86 0.92 0.88 0.88 0.86 0.88 0.87 0.93 0.81 0.89 0.88 

SVR 0.83 0.81 0.81 0.81 0.84 0.85 0.84 0.77 0.81 0.85 0.82 

DTR 0.77 0.83 0.88 0.81 0.83 0.88 0.86 0.83 0.88 0.81 0.84 

RFR 0.80 0.84 0.88 0.81 0.82 0.88 0.86 0.87 0.88 0.81 0.85 

AIS-

XGBFP 

0.90 0.88 0.91 0.92 0.86 0.92 0.93 0.86 0.86 0.91 0.89 

No PI LR 0.66 0.79 0.75 0.76 0.79 0.78 0.78 0.64 0.79 0.74 0.75 

SVR 0.72 0.74 0.75 0.75 0.71 0.73 0.71 0.66 0.72 0.69 0.72 

DTR 0.73 0.73 0.71 0.73 0.76 0.76 0.76 0.69 0.72 0.75 0.73 

RFR 0.76 0.73 0.67 0.75 0.74 0.72 0.78 0.77 0.72 0.80 0.74 

AIS-

XGBFP 

0.85 0.85 0.82 0.81 0.83 0.79 0.78 0.81 0.75 0.85 0.81 

No DI LR 0.85 0.88 0.86 0.86 0.88 0.90 0.86 0.87 0.86 0.90 0.87 

SVR 0.81 0.79 0.79 0.75 0.79 0.77 0.80 0.77 0.80 0.82 0.79 

DTR 0.85 0.79 0.85 0.79 0.82 0.81 0.79 0.83 0.81 0.84 0.82 

RFR 0.79 0.83 0.81 0.85 0.79 0.86 0.83 0.82 0.81 0.81 0.82 

AIS-

XGBFP 

0.86 0.88 0.88 0.91 0.83 0.89 0.84 0.88 0.89 0.87 0.87 

No WC LR 0.88 0.80 0.86 0.87 0.86 0.84 0.84 0.83 0.83 0.81 0.84 

SVR 0.70 0.75 0.78 0.76 0.75 0.73 0.73 0.72 0.74 0.71 0.74 

DTR 0.85 0.89 0.86 0.82 0.83 0.81 0.80 0.81 0.83 0.83 0.83 

RFR 0.85 0.84 0.83 0.88 0.87 0.83 0.83 0.82 0.80 0.87 0.84 

AIS-

XGBFP 

0.89 0.82 0.82 0.88 0.88 0.85 0.81 0.82 0.86 0.83 0.85 
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