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A Two-stage Outlier Filtering Framework for
City-Scale Localization using 3D SfM Point Clouds

Wentao Cheng, Kan Chen, Weisi Lin, Fellow, IEEE, Michael Goesele, Xinfeng Zhang, and Yabin Zhang

Abstract—3D Structure-based localization aims to estimate the
6-DOF camera pose of a query image by means of feature
matches against a 3D Structure-from-Motion (SfM) point cloud.
For city-scale SfM point clouds with tens of millions of points,
it becomes more and more difficult to disambiguate matches.
Therefore a 3D Structure-based localization method, which can
efficiently handle matches with very large outlier ratios, is needed.
We propose a two-stage outlier filtering framework for city-scale
localization that leverages both visibility and geometry intrinsics
of SfM point clouds. Firstly, we propose a visibility-based outlier
filter, which is based on a bipartite visibility graph, to filter
outliers on a coarse level. Secondly, we apply a geometry-based
outlier filter to generate a set of fine-grained matches with
a novel data-driven geometrical constraint for efficient inlier
evaluation. The proposed two-stage outlier filtering framework
only relies on intrinsic information of a SfM point cloud. It is
thus widely applicable to be embedded into existing localization
approaches. The experimental results on two real-world datasets
demonstrate the effectiveness of the proposed two-stage outlier
filtering framework for city-scale localization.

Index Terms—City-scale localization, outlier filter, image-based
localization, hybrid inlier evaluation.

I. INTRODUCTION

ESTIMATING the camera pose of a query image w.r.t.
a Structure-from-Motion (SfM) point cloud plays a key

role in many computer vision tasks such as 3D reconstruction
[1]–[3], image-based localization [4]–[6] and visual navigation
for self-driving cars [7]. A typical 3D structure-based localiza-
tion pipeline starts with establishing 2D-3D matches by finding
correspondences between the feature descriptors (e.g., SIFT
[8]) in a query image and the feature descriptors associated
with 3D points in a SfM point cloud. The 6-DOF camera
pose can be computed from 2D-3D matches by applying
perspective-n-point pose solvers [9], [10] in RANSAC [11].

A conventional method to disambiguate matches is the
widely used SIFT ratio test [8]. However, in a city-scale
SfM point cloud that depicts urban scenes, the associated
dense feature space consists of many nearly identical feature
descriptors. It is therefore difficult for the SIFT ratio test
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to obtain sufficient high quality matches with a city-scale
SfM point cloud. In order to better preserve correct matches,
recent state-of-the-art works [5], [12] usually adopt a relaxed
SIFT ratio test, yielding a large number of wrong matches.
This makes RANSAC difficult to find a reliable solution with
such large ratio of outliers, thereby results in a failure of
localization.

In order to handle such cases with very large outlier ratios,
many outlier filters are proposed to remove outliers based
on visibility [4], [13] or geometry intrinsics [5], [12], [14]
of SfM point clouds. However, due to accuracy and com-
putation complexity limitations, they cannot well deal with
city-scale localization problems. In this paper, we propose
a two-stage outlier filtering framework that consists of an
improved visibility-based outlier filter and a novel geometry-
based outlier filter. The two-stage framework overcomes the
limitations of both outlier filters with a coarse-to-fine design,
and achieves both efficiency and accuracy in disambiguating
matches with very large outlier ratios.

The visibility-based outlier filter, which consists of database
image voting, re-ranking and match augmentation operations,
is conducted on the image-level to remove outliers in a coarse
level. A database image voting method is proposed based on
the widely known knowledge that correct matches exhibit a
strong co-visibility relationship [4], [13]. To further improve
the filtering performance, we introduce a re-ranking scheme
to eliminate falsely voted database images. Previous methods
[5], [12], [14] assume that in the initialization step, the relaxed
SIFT ratio test does not reject any correct matches. However,
this assumption is untenable when dealing with the dense
feature space of the city-scale SfM point cloud. To this end,
we propose a match augmentation scheme to carefully recover
rejected correct matches with the aid of selected database
images. Although the proposed visibility-based outlier filter
is efficient when dealing with extremely large outlier ratio
scenarios, e.g., 99% outliers, the resultant matches may still
contain a large number of outliers due to the limited accuracy
of the database image voting procedure.

The second stage is a geometry-based outlier filter based
on a novel data-driven geometrical constraint. Our key ob-
servation is that, in a city-scale SfM point cloud, there are
many 3D points that can only be observed by nearby cameras
due to strong view occlusions. We denote such 3D points as
locally visible points. Based on this observation, we derive
a geometrical constraint to restrict the position of camera
that can observe the locally visible points. Previous geometry-
based outlier filters either heavily rely on additional priors
about the vertical direction and approximate height of a camera
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relative to a SfM point cloud [5], [12], or require a set of
high quality matches for statistically pruning outliers [14]. The
derived geometrical constraint in our method does not require
any prior knowledge about the camera model. In addition, this
geometrical constraint enables us to efficiently handle potential
low quality matches which are generated by the visibility-
based outlier filter in the first stage. The main contributions
of this paper can be summarized as follows:

1) A two-stage outlier filtering framework is proposed that
simultaneously leverages the merits of the visibility and
the geometry intrinsics of a SfM point cloud for city-
scale localization. The proposed framework removes
outliers in a coarse-to-fine manner by sequentially ap-
plying the designed visibility and geometry based outlier
filters.

2) We propose a visibility-based outlier filter, which utilizes
the bipartite relationship between database images and
3D points in a SfM point cloud. Through database image
re-ranking and match augmentation, the visibility-based
outlier filter is able to preserve more correct matches
without severely degrading the filtering quality.

3) We derive a novel data-driven geometrical constraint for
locally visible points, which are widespread in city-scale
SfM point clouds. Based on this constraint, we propose
a geometry-based outlier filter in which matches with
locally visible points and non-locally visible points are
separately evaluated with a hybrid scheme. Comparing
with the classic re-projection error measurement, the
derived geometrical constraint exhibits a superior effi-
ciency in handling matches with large outlier ratio.

4) The effectiveness and efficiency of the proposed two-
stage framework and its individual modules are compre-
hensively analyzed. Based on the extensive experimental
results, the matches generated by our method show a
high reliability for successful 3D structure-based city-
scale localization.

The rest of this paper is organized as follows: Section II
reviews related work in city-scale localization. Section III
gives an overview of the proposed two-stage outlier filtering
framework. Section IV presents the proposed visibility-based
outlier filter as the first stage. Section V presents the proposed
geometry-based outlier filter as the second stage. Section VI
shows comprehensive experimental results on two city-scale
datasets. The conclusion is finally given in Section VII.

II. RELATED WORK

A. 2D Image-based Localization

2D image-based localization methods find a query image’s
location based on the geotags of the most relevant images
retrieved from image datasets [15]–[20]. Thanks to the scala-
bility of image retrieval techniques such as the Bag-of-Words
(BoW) model, 2D image-based localization is efficient in
dealing with city-scale datasets. Recent BoW-based works
have significantly improved the retrieval performance. Philbin
et al. [21] refined the top retrieved image list with a spatial
verification step. Feature descriptors with more ambiguities
were down-weighted [18], [22], [23] or avoided [24], [25] in

the index construction step. Sattler et al. [26] down-weighted
matches that could be inliers in multiple places to tackle
the geometrical burstness problem, i.e., similar geometrical
configurations in both relevant and irrelevant database photos.
Chen et al. [27] fused two types of street-level image repre-
sentations and incorporated the GPS priors to improve city-
scale localization. Liu et al. [28] represented local features
using binary codes to achieve a fast geometrical verification.
More compact representations such as VLAD [29], [30] or
NetVLAD [31] have also been explored for 2D image-based
localization.

B. 3D Structure-based Localization

The 6-DOF camera pose of an image can be computed based
on a 3D point cloud reconstructed via SfM techniques. 2D-
3D matches should first be established between the feature
descriptors in an image and the feature descriptors associated
with the 3D points. The 6-DOF camera pose can then be
computed using the found 2D-3D matches. Concerning city-
scale SfM point clouds, recent works can be divided into two
major categories:

1) Towards efficient feature matching: There can be more
than tens of millions of feature descriptors in a city-scale SfM
point cloud, which makes feature matching time-consuming.
In order to accelerate the feature matching process, Li et al.
[32] employed a prioritized 3D-to-2D matching strategy which
prioritized 3D points with higher degrees in the bipartite visi-
bility graph. Sattler et al. [33] quantized the feature descriptors
in a SfM point cloud into a compact visual vocabulary dictio-
nary for efficient localization. Choudhary et al. [34] proposed
to apply feature matching on a small subset of 3D points,
which are potentially visible in the query image. Several
bi-directional feature matching frameworks [4], [35] were
proposed to improve the localization performance without
sacrificing the run-time efficiency. The major shortcoming of
the above approaches is that they rely on the SIFT ratio test
to disambiguate matches, which may lose the discriminative
power especially in the much larger city-scale SfM point
clouds. Feature matching can also be accelerated by using a
compact binary feature description with a supervised indexing
method [36], or simplifying the city-scale SfM point cloud
into a very compact model [37], [38]. However, information
loss is inevitable in these methods.

2) Towards disambiguating matches: Traditional outlier fil-
ters based on feature appearance, e.g., the SIFT ratio test, have
difficulties when handling matching ambiguity in city-scale
SfM point cloud. Recent works [4], [5], [13], [14] attempted
to relax the SIFT ratio test in order to preserve more correct
matches. To deal with the resultant matches with very large
outlier ratio, Li et al. [4] employed a RANSAC sampler by
encoding the co-visibility relationship among correct matches.
Sattler et al. [13] implicitly conducted feature matching by
quantizing the feature descriptors in the SfM point cloud
into a fine vocabulary. An image voting strategy based on
hyperpoints was adopted to filter ambiguous matches.

Other approaches [5], [12], [14] filtered wrong matches
using additional or intrinsic geometrical cues. Svärm et al. [12]
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assumed that the camera’s vertical direction and approximate
height relative to the SfM point cloud were known in advance.
They proposed an outlier filter by formulating a 2D registration
problem under this assumption. Similarly, Zeisl et al. [5]
used the same camera model assumption and derived a linear
camera pose voting algorithm. To improve the efficiency of
camera pose voting, they pre-filtered obvious wrong matches
using local feature constraints such as feature scale and feature
orientation. Camposeco et al. [14] introduced a novel pose
solver using intrinsic angle constraints of SfM point clouds.
The camera position can be quickly estimated using two
matches with this pose solver. However, all camera position
hypotheses should be computed i.e., 108 camera position
hypotheses for 104 matches, to remove outliers. In addition,
the final outlier filter requires a set of high quality matches to
statistically remove outliers.

C. Hybrid Localization

Hybrid localization [39], [40] combines 2D image-based
and 3D structure-based approaches to obtain a query image’s
6-DOF camera pose. Irschara et al. [39] augmented the 3D
database by synthesizing multiple views on the 3D scene and
implicitly conducted 2D-3D feature matching through selected
views. Recently, Sattler et al. [40] utilized advanced image
retrieval techniques [17], [31] to find relevant database images
for a query image. Instead of reconstructing a large-scale SfM
point cloud, they proposed to reconstruct a local compact
SfM point cloud using the retrieved database images. Even
though the experimental results showed that the advanced
image-retrieval techniques helped to obtain better matches than
directly matching with a large-scale SfM point cloud, the local
SfM point cloud reconstruction step significantly decreased the
computational efficiency.

D. Learning-based approaches

Recent advancement in deep learning techniques has made it
possible to process general 3D point clouds for reconstruction
[41], semantic reasoning [42], and learning discriminative 3D
descriptors [43]. In the context of 3D structure-based local-
ization, Kendall et al. trained a convolutional neural network
(CNN) that can regress a 6-DOF camera pose from an image
[44]. Walch et al. improved the performance of camera pose
regression by integrating Long-Short Term Memory (LSTM)
units with CNN [45]. To better model the scene with CNN,
Kendall et al. proposed several novel loss functions based
on re-projection error and scene geometry [46]. However,
these learning-based approaches are still less accurate than
traditional 3D structure-based approaches. Instead of directly
regressing camera pose, Brachmann et al. proposed an implicit
CNN-based 2D-3D matching approach by regressing the 3D
scene coordinate for an input image patch [47]. Though
achieving high accuracy, this approach encountered a training
failure for large-scale outdoor scenes.

III. OVERVIEW OF THE PROPOSED METHOD

Fig. 1 illustrates the complete localization pipeline with the
proposed two-stage outlier filtering framework. The pipeline

Query image

Feature matching

Initialization
(relaxed ratio test)

Database image 
voting

Database image 
re-ranking

Outlier filtering
and match

augmentation

6-DOF camera 
pose

Pose estimation

Locally visible points
classification

Matches𝑀𝑔
Visibility-based
outlier filter

Geometry-based

outlier filter

InputInput Output

Deriving geometrical
constraint

SfM model

Matches𝑀𝑣

𝑀𝑓 Outlier filtering

𝑀

Fig. 1: The localization pipeline with the proposed two-stage
outlier filtering framework (in bold font).

starts with a 1-to-N feature matching procedure [5] between a
query image and a pre-computed SfM point cloud to obtain a
set of 2D-3D matches M. In the beginning of the visibility-
based outlier filter, we use a relaxed SIFT ratio test as an
initialization step to leverage its power of rejecting unreliable
matches. By casting votes to database images using the ini-
tialized matches Mf and the bipartite visibility graph, the
probability that a database image contains correct matches
can be measured by its corresponding weighted votes. After
database image re-ranking, wrong matches can be filtered
using the top rank database images. Moreover, correct matches
can also be augmented using the top rank database images.
With the matches Mv obtained by the visibility-based outlier
filter in the first stage, a subsequent geometry-based outlier
filter is applied as the second stage. Locally visible points
are classified and a novel geometrical constraint is derived
based on locally visible points. The outliers can be further
removed by integrating the derived geometrical constraint
into a RANSAC-based pose estimation method. The final 6-
DOF camera pose can be computed using the matches Mg

generated from the geometry-based outlier filter.

IV. VISIBILITY-BASED OUTLIER FILTER

The pipeline of the proposed visibility-based outlier filter
is illustrated in Fig. 2. In the following, we will describe the
proposed visibility-based outlier filter in detail.

A. Initialization

In a SfM point cloud, each 3D point is associated with a set
of 2D feature descriptors such as SIFT feature descriptors [8].
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Query image (with 2D descriptors)

3D points

Database images

Accepted 2D-3D matches

Rejected 2D-3D matches

Eliminate single voted 
database images

Top ranked 
database images

+
Augmented 2D-3D match

① ②

③ ④

+
GPS-based re-ranking 

if available

Fig. 2: The pipeline of the proposed visibility-based outlier filter. 1: initialization with a relaxed ratio test (Section IV-A). 2:
database image voting with the bipartite visibility graph (Section IV-B). 3: re-ranking by eliminating single voted database
images (Section IV-C). In addition, the ranking can be optionally refined if GPS data is available. 4: outlier filtering and match
augmentation (Section IV-D).

2D-3D matches can be established by searching nearest neigh-
bors in a SfM point cloud for each query feature descriptor.
Let M be a set of initial 2D-3D matches established between
a query image and a SfM point cloud. The visibility-based
outlier filter starts with rejecting matches based on feature
appearance. The SIFT ratio test is a widely utilized method to
reject unreliable matches [5], [8], [12], [14], [35]: let p1st and
p2nd be the first and second nearest neighbors in a SfM point
cloud for a query feature q. A match is considered to be reli-
able if it satisfies the ratio test:

∥∥q − p1st∥∥
2
/
∥∥q − p2nd∥∥

2
< τ .

The threshold τ is usually set as 0.8 when matching between
two images. However, due to the high density of feature space
in a city-scale SfM point cloud, a correct match will often
fail the SIFT ratio test and be rejected. In order to preserve
more correct matches while rejecting wrong matches as much
as possible, a relaxed SIFT ratio test should be applied. The
relaxation can be done by either increasing the threshold of the
SIFT ratio test or using an adaptive threshold [5]. Let Mf be
the matches that are accepted by the relaxed SIFT ratio test. In
practice, Mf contains much fewer ambiguous matches than
the original matches M. We therefore use Mf instead of M
for the following database image voting procedure.

B. Database Image Voting

After obtaining the matches Mf with a relaxed SIFT ratio
test, we aim to remove outliers by utilizing the visibility
intrinsics of a SfM point cloud. In a SfM point cloud, the
relationship between 3D points and database images can be
modeled as a bipartite visibility graph G = (P,D, E). Each
node p ∈ P represents a 3D point in the SfM point cloud, and
each node d ∈ D represents a database image which is used
to reconstruct the SfM point cloud. An edge (p, d) ∈ E exists
if the 3D point p is visible in the database image d.

Leveraging the bipartite graph G, each 2D-3D match
(q, p) ∈ Mf can cast a vote to the database images that
observe p. Thus, the votes for a database image d can be
computed as follows:

V (d) = {(q, p) | (p, d) ∈ E , (q, p) ∈Mf} . (1)

Ideally, a correct 2D-3D match (q, p) means that the query
feature q should depict the same location as the 3D point

p. Due to the continuity of geometry space, correct matches
should be frequently co-visible. The co-visibility of correct
matches makes the corresponding database images receiving
high votes. Meanwhile, the weak co-visibility among wrong
matches makes them randomly casted to irrelevant database
images. In a city-scale dataset which contains a large number
of database images, the votes that each database image can
receive with wrong matches should be much smaller than the
votes from correct matches. However, a database image that
observes more 3D points is inherently more likely to receive
votes from wrong matches. In order to avoid bias towards
database images with more visible 3D points, the original vote
|V(d)| should be weighted by the number of 3D points that are
seen by the database image d. Let F (d) = {p | (p, d) ∈ E} be
the 3D points observed by the database image d. The weighted
votes W(d) of the database image d can be calculated as
follows:

W(d) =
|V(d)|
|F(d)|

. (2)

In real-world scenes, there are various kinds of repetitive
patterns, e.g., doors or windows, in a local region. It is
possible that a query feature may establish multiple locally
ambiguous 2D-3D matches in repetitive patterns. The locally
ambiguous matches will falsely increase the weighted votes of
the corresponding database images especially when the votes
contain few correct matches. Unfortunately, the relaxed SIFT
ratio test used in the initialization cannot entirely remove such
locally ambiguous matches. In order to reduce the influence of
the locally ambiguous matches in the database image voting
procedure, we use an approach similar to Sattler et al. [13]
to enforce that a query feature casts one unique vote to the
same database image. Considering a query feature q that
establishes local ambiguous matches to the database image d
as {(q, p) | (p, d) ∈ E}, we randomly choose one match from
the locally ambiguous matches for casting vote to make sure
that ∀(q′, p′) ∈ V (d) \ (q, p) : q 6= q′.

C. Database Image Re-ranking

A database image with more weighted votes indicates that
the corresponding matches are more likely to be correct. Thus
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the outlier filtering problem can be formulated as solving an
image retrieval problem. Given a query image, the database
images are ranked according to the corresponding weighted
votes. Among the top rank database images, special attention
should be paid on those, which receive only one single vote
from the established matches. In a city-scale dataset, it is
common that some database images can only see a small
number of 3D points due to low image resolution or viewpoint
uniqueness. For such database images, a single vote could
produce a large weighted vote value and a top rank. To recap,
our core idea is based on the fact that correct matches are
frequently co-visible and thereby vote to the same database
image. Since the single vote does not exhibit any co-visibility
feature, we first eliminate all database images with |V(d)| ≤ 1
from the database image list. The top K database images DK

are selected for outlier filtering. In addition, for the datasets
with additional prior information such as GPS data, we can
use the available data to further refine the ranking of database
images. The Euclidean distance between the query image and
each database image can be estimated using the associated
GPS tags. We only select the top K database images whose
Euclidean distances to the query image are below a threshold.
In this paper, we set this threshold as 300 meters as suggested
by Zeisl et al. [5]. To avoid misunderstanding, all distances
mentioned below are Euclidean distances.

D. Outlier Filter and Match Augmentation

In previous approaches [4], [5], [14], an inappropriate as-
sumption is that the matches rejected by the relaxed SIFT ratio
test are all wrong matches. Here, we point out that even though
wrong matches take up the majority of the rejected matches
by the relaxed SIFT ratio test, a portion of correct matches are
mistakenly rejected. It is meaningful and beneficial to recover
correct matches back to further improve the quality of the
matches. After retrieving the top rank database images DK , a
match inMf , which casts a vote to one of the database image
in DK , can be safely selected into Mv as follows:

Mv =
{
(q, p) | (q, p) ∈Mf , (p, d) ∈ E ∧ d ∈ DK

}
. (3)

Moreover, for a match in M \Mf which also casts a vote
to one of the database image in DK , it can be recovered as
long as the associated query feature has not been found in
Mv yet. Therefore, for each match in (q′, p′) ∈M\Mf , we
iteratively select it into Mv if ∀(q, p) ∈ Mv : q 6= q′. Note
that the recovered matches from M\Mf are not involved in
the previous database image voting procedure.

V. GEOMETRY-BASED OUTLIER FILTER

Having obtained the matchesMv using the visibility-based
outlier filter in the first stage, we now propose to further filter
wrong matches using geometrical considerations. Our key
observation is that visual occlusion is a common phenomenon
in a city-scale SfM point cloud. Therefore, there are a large
number of locally visible points, which are only observed by
database images whose camera positions lie nearby. Fig. 3
illustrates a typical example of a locally visible point. The
restriction of cameras observing locally visible points enables

City-scale SfM point cloud

Zoomed view

Locally visible point viewed in 
database image

Locally visible point

Camera of database image

Fig. 3: An illustration of a locally visible point in the San
Francisco dataset [4]. A locally visible point (red) is observed
by nearby cameras (orange) of the database images.

us to derive a novel geometrical constraint that is simply based
on the camera position. Different from traditional re-projection
error measurement, the proposed geometrical constraint can
serve as a more robust inlier evaluation measurement in
RANSAC-based pose estimation, especially under large outlier
ratio scenario. In this section, we will describe the proposed
geometrical constraint and its application in detail.

A. A Data-driven Geometrical Constraint

In order to efficiently classify the locally visible points, we
leverage the bipartite visibility graph G. Let I (p) be the set
of database images which observe the 3D point p as follows:

I (p) = {d | (p, d) ∈ E} . (4)

Suppose I(p) is of size n, a 3D point p can be regarded as a
locally visible point if the distance between p and the camera
position of each database image in I (p) is below a defined
distance threshold Tlocal as follows:

∀ci : ‖ci − p‖2 ≤ Tlocal, (5)

where ci represents the camera position of the ith database
image in I(p).

For each locally visible point in a SfM point cloud, we
derive a geometrical constraint to restrict the position of a
hypothetical camera, which can observe the locally visible
point. We define a sphere of radius r around the locally visible
point to represent the region that a hypothetical camera may
appear. The radius should be smaller than the distance defined
in Eq. 5 to ensure the locality. In addition, an adaptive radius
can be defined based on the average camera-to-point distance
from a locally visible point p to the camera position of each
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Fig. 4: The derived geometrical constraint for a locally visible
point p. For each camera position of the database image which
observes p, we define a cone with height r and angle λ. A
hypothetical camera ch which observes p should lie inside at
least one of the defined cones.

database image in I(p). The average camera-to-point distance
is calculated using the equation:

dist(p) =
∑n

i=1(‖ci − p‖2)
n

(6)

where ci represents the camera position of the ith database im-
age in I(p). For cases when the average camera-to-point dis-
tance is much smaller than the local distance threshold Tlocal
in Eq. 5, we define an adaptive radius as r = αdist(p). There-
fore, the radius of the sphere is r = min(αdist(p), Tlocal). In
this paper, we empirically set α = 4.

In addition, we apply the angle constraint [5], [13], [20]
based on the view direction since the SIFT feature descriptor
is variant to a significant viewpoint change. For each database
image that can observe the locally visible point p, we compute
the viewing direction as a normalized vector pointing from
the camera position ci to p. For a camera that observes
p, the angle between the current viewing direction and the
viewing direction from one of the database images should be
smaller than an angle threshold λ. Therefore the final derived
geometrical constraint Constraint(ch, p) can be defined as
follows:

Constraint(ch, p) =

{
‖ch − p‖2 < min(αdist(p), Tlocal)
∃ci : ](−→chp,−→cip) < λ,

(7)
where ci represents the camera position of the ith database
image in I(p). The derived geometrical constraint is illustrated
in Fig. 4.

B. The Outlier Filter

In order to apply the derived geometrical constraint to
filter outliers, a hypothetical camera position needs to be
established. Assuming that the camera’s internal calibration
matrix K ∈ R3×3 of a query image is known in advance,
we utilize a P3P pose solver [10] to establish a hypothetical
camera pose P = K [R|t] ∈ R3×4, where R represents the
rotation matrix and t is the translation vector. The hypothetical

Algorithm 1 The Geometry-based Outlier Filter

Require: Mv , matches selected by the visibility-based outlier
filter; ML ⊆ Mv , matches corresponding to the set of
locally visible points L.

Require: The camera internal matrix K; re-projection error
threshold γ; maximum RANSAC iterations Iter.

1: Inliermax ← 0
2: for j = 0;j < Iter do
3: Randomly sample three matches from Mv

4: Compute the rotation matrix R and the translation
vector t using P3P solver

5: Obtain the projection matrix P = K [R|t] and the
camera center c = −Rt

6: Inliers I1 = Re-projection (Mv \ML,P, γ)
7: Inliers I2 = Constraint(c, p), p ∈ L
8: if |I| ≥ Inliermax then
9: P∗ ← P,Inliermax ← |I|

10: end if
11: j ← j + 1
12: end for
13: return The inliers of P∗ as Mg

camera position can be computed as c = −Rt. Given the
matches Mv generated after the visibility-based outlier filter,
our goal is to find the camera position that is most likely to
observe the 3D points associated with correct matches inMv .
To this end, we adopt a standard RANSAC scheme [11] to
verify multiple camera position hypotheses. In each RANSAC
iteration, the matches corresponding to locally visible points
are regarded as inliers if they satisfy the geometrical constraint
in Eq. 7. The matches corresponding to non-locally visible
points are evaluated using the traditional re-projection error
measurement as follows:

‖q −Pp‖2 ≤ γ. (8)

The match corresponding to a non-locally visible point can be
regarded as an inlier if the re-projection error is below the pixel
threshold γ. Using the above hybrid inlier evaluation scheme,
the camera model P∗ with the largest number of inliers is
returned. The inliers of P∗ therefore are selected as Mg for
the final pose estimation. The geometry-based outlier filter is
summarized in Algorithm. 1.

By incorporating the derived geometrical constraint for
locally visible points, our geometry-based outlier filter is
efficient in handling matches with large outlier ratio for two
reasons. Firstly, traditional inlier evaluation method based on
re-projection error requires an accurate 6-DOF camera pose.
While in the proposed geometry-based outlier filter, the inlier
evaluation for matches corresponding to locally visible points
is relaxed since it only requires an approximate 3-DOF camera
position. Secondly, for a query image that depicts a local
scene, a P3P sample with three inliers is able to produce
a theoretically correct camera position which lies nearby
locally visible points corresponding to inliers. Inspired from
Camposeco et al. [14], we observe that a P3P sample with only
two inliers is able to produce an approximate camera position
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City-scale SfM point cloud Zoomed view 1 Zoomed view 2City-scale SfM point cloud

Camera positions: With P3P sample-0/1 inlier With P3P sample-2 inliers With P3P sample-3 inliersLocally visible points

Fig. 5: The distribution of camera positions in the geometry-based outlier filter for a query image that depicts a local scene.
The camera positions with P3P samples (0 or 1 inlier) distributed throughout the whole SfM point cloud. It looks like many of
these are clearly wrong, e.g., in the ocean. The distribution shows that a P3P sample with 2 inliers, which is much easier to be
obtained than a P3P sample with 3 inliers under large outlier ratio scenarios, can provide us an approximate camera position
to apply the proposed geometrical constraint. The data was generated by randomly sampling 105 trials using the image in Fig.
3.

which lies nearby the theoretically correct camera positions.
Fig. 5 shows an example of the camera position distribution
with a query image that depicts a local scene. This relaxation
on the number of inliers in a P3P sample significantly increases
the probability of finding an approximate camera position to
apply the derived geometrical constraint.

Suppose the inlier ratio of established 2D-3D matches is
ε, the probability of obtaining a P3P sample with two inliers
(P3P-2i) can be computed as ε2. The traditional re-projection
error measurement requires an accurate 6-DOF camera projec-
tion matrix, which is computed by a P3P sample with three
inliers (P3P-3i). The probability of obtaining a P3P-3i sample
can be computed as ε3. Considering a large outlier ratio case,
e.g., ε < 0.1, the probability of obtaining a P3P-2i sample
is much larger than obtaining a P3P-3i sample by a factor of
1/ε. Therefore, the proposed geometrical constraint for locally
visible points is more robust under large outlier ratio scenario
comparing with traditional re-projection error measurement.

VI. EXPERIMENTS

We evaluate the proposed two-stage outlier filtering frame-
work on two popular real-world datasets: the San Francisco
dataset [4], [27] and the Dubrovnik dataset [32]. Table I sum-
marizes the statistics of the datasets used in our experiments.
The San Francisco dataset consists of 1.06 million street-view
database images for image retrieval tasks. For 3D structure-
based localization, we use the publicly available SF-0 SfM
point cloud [4], which is built from 610k database images in
the San Francisco dataset. The query images have a different
spatial distribution compared to the database images, making
feature matching in the San Francisco dataset difficult. In
addition, each database image is associated with a precise
GPS coordinate. The query images also are associated with
GPS coordinates, in which some are not very precise. As far
as we know, the San Francisco dataset is the most challenging
dataset for 3D structure-based localization so far. Therefore,
we mainly focus on evaluating our approach on this dataset.

TABLE I: The statistics of the datasets used in our experi-
ments.

Dataset Database images 3D points Query images
San Francisco (SF-0) 610k 30.34M 803

Dubrovnik 6k 1.89M 800

The Dubrovnik dataset has been widely studied by [4], [32],
[33], [35] and almost all query images can be localized. Simi-
lar to recent works [5], [14], we mainly focus on evaluating the
pose accuracy on the Dubrovnik dataset. For a comprehensive
comparison, we include the state-of-the-art approaches from
three categories as follows:
• 3D structure-based approaches: Active search [35], Co-

occurrence [4], KVD [12], CPV [5], Hyperpoints [13]
and Toroidal [14].

• Hybrid localization approaches which combine 2D
image-based and 3D structure-based approaches: Den-
seVLAD + SfM [40].

• Learning-based localization approach: PoseNet with
novel geometrical loss functions (GLF), abbreviated as
PoseNet (GLF) [46].

A. Evaluation on the San Francisco Dataset

1) Implementation Details: In the feature matching step,
we use the FLANN library [48] for approximate nearest
neighbor searching between a query image and the SF-0
SfM point cloud. For fair comparison, we follow the 1-to-
N matching strategy used in existing works [5], [12]. For
each query feature, at most 3 matches will be established.
In the initialization, a match is verified with a variable search
threshold, which is defined as 0.7 times the squared distance to
the nearest neighbor in the query image itself. In the proposed
visibility-based outlier filter, we empirically select the top 200
database images and perform the match augmentation scheme
with the selected database images. In the proposed geometry-
based outlier filter, we empirically set the distance threshold
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Fig. 6: The experimental results of our method on the San
Francisco dataset.

TABLE II: The average match statistics of successfully local-
ized query images in different stages of VF+GF in the San
Francisco dataset.

Matches Mf Mv Mg Final Inliers
Stage Input +VF +VF+GF +VF+GF+P3P

#Matches 4528 287 92 40
#Matches correctIDs 76 102 84 38
%Matches correctIDs 1.8% 30.4% 87.8% 90.2%

Tlocal = 50 meters and the angle threshold λ = 60◦. Note that
we used the same parameter setting in both the San Francisco
dataset and the Dubrovnik dataset. We run a maximum of 1000
RANSAC iterations in the geometry-based outlier filter.

2) Evaluation Criteria: In the San Francisco dataset, all
database images and query images are annotated with the
ground truth building IDs. A query image is considered to
be successfully localized if the final inliers are registered to
the ground truth building IDs. We use the improved version of
ground truth annotations reported by Arandjelović et al. [23].
Note that there are 66 query images whose ground building
IDs are missing in the SF-0 point cloud. We use the same
evaluation criteria as customary used in previous work [4],
[5], [13], [27] that the performance is evaluated as the recall
rate under 95% precision.

3) Overall Evaluation: Our method includes two major
modules: the proposed visibility-based filter, abbreviated as
VF and the proposed geometry-based filter, abbreviated as GF.
In order to separately evaluate the impact of each module, we
conduct several experiments on the San Francisco dataset with
the following settings:
• VF: only use the visibility-based outlier filter.
• GF: only use the geometry-based outlier filter.
• VF+GF: use the visibility-based outlier filter and the

subsequent geometry-based outlier filter.
• VF+GF+GPS: use the visibility-based filter and the sub-

sequent geometry-based filter. Incorporate the GPS data
in the visibility-based filter as described in Section IV-C.

After obtaining the set of matches using the above experi-
mental settings, we use P3P-RANSAC [10] to compute the
final 6-DOF camera pose. Fig. 6 reports the experimental
results using the above settings. For each setting, multiple

TABLE III: The comparison of our method with the state-of-
the-art works on the San Francisco dataset. All the listed recall
rates are measured at a 95% precision rate. The Vertical and
Height assumptions mean that the camera’s vertical direction
with respect to the underlying SfM point cloud and the
camera’s approximate height are known in advance.

Method Geometrical Assumptions Recall Rate [%]
w/o GPS w/ GPS

KVD [12] Vertical+Height 68.0 -
CPV+P3P [5] Vertical+Height 67.5 74.2

CPV [5] Vertical+Height 68.7 73.7
Co-occurrence [4] - 54.2 -
Hyperpoints [13] - 61.9 -

Our method - 69.6 78.1

recall@precision results are generated by varying the inlier
threshold to determine whether a query image is successfully
localized. We notice that GF achieves the worst performance
among all settings. The reason is that the original matches
are very noisy, i.e., below 1% inlier ratio. RANSAC used in
GF requires too many iterations to find a reliable solution
with such extremely noisy matches. The significant gain of
VF+GF over VF indicates that the matches generated from
VF may still contain a large number of outliers, which GF
can remove efficiently. With VF+GF, we achieve a 69.6%
recall at 95% precision. By incorporating the provided GPS
data, the relevance between then selected top rank database
images and the query image has been significantly improved.
VF+GF+GPS can provide us a 78.1% recall at 95% precision.

In Table II, we report the average match statistics of
successfully localized query images using our full prior-free
pipeline VF+GF. Since it is difficult to determine the number
of inliers in the original matches with extremely large outlier
ratios, we use the number of matches which are registered
to the correct building IDs as an approximate upper bound
of inliers. The ratio of the matches with correct building
IDs among the whole matches can be used to evaluate the
quality of the matches. The matchesMf after the initialization
step have a very large outlier ratio, which make the pose
estimation difficult. After applying VF, the quality of matches
is significantly improved from a 1.8% ratio to 30.4% ratio.
With the matching augmentation procedure in VF, the number
of matches with correct building IDs increases from 76 to
102. However, for some query images the matches still contain
a large number of wrong matches, which make VF obtain a
lower recall rate compared with VF+GF. Due to the relaxation
in both hypothesis and verification phase of RANSAC, GF
is able to efficiently handle the matches with large outlier
ratio, which are generated by VF. After VF+GF, the matches
with correct building IDs are well preserved and the ratio
significantly increases from 30.4% to 87.8%.

4) Comparison with state-of-the-art: Table III reports the
comparison between our method and the state-of-the-art ap-
proaches. The performance is evaluated by the recall at 95%
precision, which was also used by related works [4], [5], [13],
[27]. Our method outperforms state-of-the-art 3D Structure-
based methods in scenarios without and with GPS. Without
additional assumptions about the camera’s vertical direction
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Fig. 7: The exemplary query images and the corresponding estimated 6-DOF camera poses in the SF-0 SfM point cloud for
the San Francisco dataset.
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(a) The performance comparison to evalu-
ate the re-ranking scheme in Section IV-C
and the matching augmentation scheme in
Section IV-D.

GT Building ID: 727027372 (missing)
Registered to: 727027405 (exist)

Pier 1
Pier 1 Pier 5

Pier 29

Pier 15 Pier 35

GT Building ID: 727027372 (missing)
Registered to: 727027279 (exist)

GT Building ID: 727026949 (missing)
Registered to: 727027134 (exist)

GT Building ID: 727027405 (exist) GT Building ID: 727027279 (exist) GT Building ID: 727027134 (exist)

(b) First row: the query images whose ground truth building ID annotations exist in
the SF-0 SfM point cloud, the bounding box shows the corresponding pier marks
of different building IDs. Second row: the falsely localized query images caused by
the matching augmentation scheme. Their ground truth building ID annotations are
missing in the SF-0 SfM point cloud. They are falsely registered to the same building
IDs as images in the first row due to nearly identical appearance.

Fig. 8: The ablation study of the proposed visibility-based outlier filter (VF) on the San Francisco dataset.

and approximate height relative to the SfM point cloud, our
method (GF+VF) achieves a 69.6% recall at 95% precision.
By incorporating the GPS data, the recall at 95% precision
increases to 78.1%. The localization performance achieved by
our method (VF+GF) proves that the visibility intrinsics and
geometry intrinsics in a city-scale SfM point cloud are not
mutually exclusive and can be combined to remove outliers.
Comparing with the 2D image-based approaches [18], [23],
[26], our method is able to provide a 6-DOF camera pose for
a query image, as illustrated by Fig. 7. The Burstness [26]
approach, which is 2D image-based, achieves a 72.4% recall
at 95% precision. Note that in the Burstness approach [26],
they leverage the original 1.06 million database images while
the SF-0 SfM point cloud used in our method only contains
the information of 610k database images. In addition, the GPS
data of database images are leveraged for clustering locations.

5) Ablation Study of VF: To evaluate the impact of each
individual component of the visibility-based outlier filter (VF),
we conduct an ablation study on the San Francisco dataset
with different VF schemes. Fig. 8a presents the experimental
results of the re-ranking scheme in Section IV-C and the match
augmentation scheme in Section IV-D. We can notice that
the re-ranking scheme improves the performance significantly.
This improvement indicates that the top rank database images

after re-ranking are more relevant to the query image, and
are more likely to contain correct matches. The improvement
of the recall rate proves that the match augmentation method
is able to recover correct matches back that were previously
removed. However, there is a drop of precision rate in the
high precision regime (> 95%). We found that the majority
of the additional falsely localized query images caused by
the match augmentation scheme are due to missing building
ID annotations as shown in Fig. 8b. The falsely localized
query images with missing building IDs are registered to other
locations with nearly identical appearances. In such cases, the
2D-3D matches recovered by the match augmentation step still
have high reliability to ensure the consistency between the 2D
query features and the features associated with the matched
3D points.

6) Ablation Study of GF: To evaluate the impact of each
individual component of the geometry-based outlier filter
(GF), we conduct an ablation study on the San Francisco
dataset by varying the distance threshold Tlocal of the derived
geometrical constraint in Eq. 7. Fig. 9a shows the experimental
results using different Tlocal settings. All points are classified
as locally visible points with Tlocal = ∞. We can notice
that this setting significantly decreases the localization perfor-
mance. The main reason is that for non-locally visible points
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Fig. 9: The ablation study of the proposed geometry-based outlier filter (GF) on the San Francisco dataset. Different distance
thresholds Tlocal in meter in both with GPS and without GPS scenarios.

TABLE IV: The statistics of locally visible points with dif-
ferent distance thresholds Tlocal in the San Francisco and
Dubrovnik dataset.

The San Francisco Dataset
Tlocal 25 50 100 ∞

#Locally visible points 16.68M 24.60M 28.21M 30.34M
%Locally visible points 55% 81% 93% 100%

The Dubrovnik Dataset
Tlocal 25 50 100 ∞

#Locally visible points 0.27M 0.87M 1.24M 1.89M
%Locally visible points 14% 46% 66% 100%

which can be seen by distant cameras, applying the derived
geometrical constraint will result in that many wrong matches
can easily satisfy the hybrid inlier evaluation measurement.
The resultant matches with Tlocal = ∞ usually have a large
outlier ratio, which make P3P-RANSAC difficult to obtain a
reliable solution.

Looking at Fig. 9, it is necessary to define an appropriate
distance threshold Tlocal to ensure that the derived geometrical
constraint is accurate for evaluating inliers with respect to
locally visible points. To achieve this goal, we evaluate three
distance thresholds. The statistics of locally visible points in
the San Francisco dataset is shown in Table IV. We can
notice that by setting Tlocal = 50m, 81% of 3D points are
classified as locally visible points, which is compliant with
the characteristics of the San Francisco dataset since most
of the database images depict street-view scenes. As can be
seen in Fig. 9a, by setting Tlocal = 50m or Tlocal = 100m,
our method achieves a significantly gain in both recall and
precision comparing with Tlocal =∞. This proves the benefit
of the hybrid inlier evaluation measurement in GF. By setting
Tlocal = 25m, the localization performance is worse than
Tlocal = 50m or Tlocal = 100m. The reason is that under such
setting, several points that should be locally visible points are
classified as non-locally visible points instead, thereby need
the classic re-projection error measurement. Comparing with
the inlier evaluation measurement using the derived geomet-
rical constraint, the efficiency of classic re-projection error
measurement relies more heavily on the quality of matches.

We also evaluate different Tlocal settings when incorporating
the GPS data in VF as shown in Fig. 9b. The matches
generated by VF usually have a larger inlier ratio than without
GPS scenario. Therefore, the difference of performance among
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Fig. 10: The localization performances using different 1-to-N
matching schemes.

Tlocal = 25, 50, 100 is smaller than the cases without GPS.
Applying the derived geometrical constraint to all points with
Tlocal = ∞ still achieves the worst localization performance.
We also evaluate the impact of the angle constraint in GF by
varying the angle threshold λ as shown in Fig. 9c and Fig. 9d.
There is a noticeable performance drop when λ = 30◦, which
indicates that this threshold is too strict and may reject correct
matches. From the ablation study, we can notice that the
derived geometrical constraint based on the distances between
the camera positions and the locally visible points plays a
major role in the geometry-based outlier filter.

7) Scalability and Efficiency: To evaluate the scalability
of our method, we conduct a experiment by varying the
number of nearest neighbors in the 1-to-N matching scheme
as shown in Fig. 10. As can be seen, finding only one nearest
neighbor per query feature achieves the lowest recall due to
insufficient correct matches. Among all the cases, N = 2 or
N = 3 achieve the best performance, since these seem to
provide a good balance between preserving correct matches
and rejecting wrong matches. In general, our method shows
its effectiveness in dealing with the very large outlier ratio
scenario with multiple 1-to-N matching schemes. With 1-to-3
matching scheme, the computational time for the two-stage
outlier filter (VF+GF) is close to 0.1 second.
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TABLE V: The comparison between our method and the state-of-the-art works on the Dubrovnik dataset.

Method Query Image Statistics Localization Error e [meter] Geometrical Assumptions Time [sec]
#Images e < 18.3 e > 400 1st Quarter Median 3rd Quarter

P3P-RANSAC 628 596 11 1.30 5.46 8.28 - 11.8
Active search [35] 796 704 9 0.4 1.40 5.30 - 0.25

KVD [12] 798 771 3 - 0.56 - Vertical and Height 5.06
CPV [5] 798 725 2 0.75 1.69 4.82 Vertical and Height 3.78

CPV+P3P [5] 796 744 7 0.19 0.56 2.09 Vertical and Height -
CPV+P3P+BA [5] 794 749 13 0.18 0.47 1.73 Vertical and Height -

Toroidal [14] 800 739 8 0.22 1.07 2.99 - 9.7
DenseVLAD + SfM [40] - - - 0.30 1.00 5.10 - ∼200

PoseNet (GLF) [46] - - - - 7.9 - - 0.005
Our method (Scheme 1) 794 745 4 0.29 0.69 2.15 - 2.6
Our method (Scheme 2) 797 749 3 0.28 0.70 2.10 - 1.4

Localization error = 2.46m Localization error = 0.92mLocalization error = 0.24m

Fig. 11: The exemplary query images with corresponding estimated 6-DOF camera poses and localization errors of the
Dubrovnik dataset.
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Fig. 12: The computational time of our method with Scheme 1
and Scheme 2 on the Dubronik dataset (also reported in Table
V).

B. Evaluation on the Dubrovnik Dataset

In order to fairly compare with existing works, we adopt
two feature matching schemes on the Dubrovnik dataset as
follows:
• Scheme 1: the 1-to-3 matching scheme which is used

in CPV [5]. Each query feature can find at most three
nearest neighbors in the SfM point cloud. An adaptive
distance threshold which is defined by 0.7 times the
squared distance to the nearest neighbor in the underlying

query image is set to reject ambiguous matches.
• Scheme 2: each query feature can only find at most

one nearest neighbor in the SfM point cloud, a squared
distance ratio is set as 0.9 in the SIFT ratio test to reject
ambiguous matches. This matching is the same with KVD
[12] and Torodial [14].

We use the same evaluation criteria as [5], [12], [14], [35] to
evaluate the localization result: a query image is successfully
localized if the best camera pose returned by RANSAC has
more than 11 inliers. The re-projection error threshold is set as
6 pixels. The pose accuracy can be measured with the ground
truth 6-DOF camera poses provided by Li et al. [32]. In the
Dubrovnik dataset, we select the top 20 database images in
the first stage to apply the visibility-based outlier filter. Table
V shows the results of our method and other related works on
the Dubrovnik dataset. Under Scheme 2, we achieve a slightly
better performance in both successfully localized images and
pose accuracy compared with Scheme 1. This indicates that
the matches established with Scheme 2 contain sufficient
correct matches in the Dubrovnik dataset for an accurate pose
estimation. Comparing with other methods that do not need
any additional geometrical priors [14], [35], [40], [46], we
achieve the state-of-the-art performance on the median and
3rd quarter pose accuracy, and a comparable performance on
the 1st quarter pose accuracy comparing with the Toroidal
approach [14]. Comparing with the methods [5], [12] that
rely on the assumption of the camera’s vertical direction and
approximate height, we are able to achieve competitive results.
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Fig. 11 shows the exemplary estimated 6-DOF camera poses
in the Dubrovnik dataset using our method. In addition, our
method has the third lowest computational time among all
existing methods. The Active search [35] method is efficient
by establishing at most 100 2D-3D matches for each query
image, which in the meantime reduces the pose accuracy. Fig.
12 gives the details of our method’s computational time. As
can be seen, the feature matching step occupies the majority of
the computational time. The proposed visiblity-based outlier
filter (VF) and the geometry-based outlier filter (GF) can be
efficiently executed in less than half a second.

VII. CONCLUSION

In this paper, we have proposed a two-stage outlier filtering
framework that consists of an improved visibility-based outlier
filter and a subsequent novel geometry-based outlier filter. In
the first stage, we have demonstrated that through database
image re-ranking and match augmentation, the performance of
the visibility-based outlier filter can be significantly boosted.
In the second stage, we have derived a novel data-driven
geometrical constraint that is useful in generating a set of
fine-grained matches. With a comprehensive evaluation on two
real-world city-scale SfM datasets, we have demonstrated the
effectiveness and efficiency of the proposed two-stage outlier
filtering framework in very large outlier ratio scenarios.
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