
High Performance, Adaptive Texture Streaming and Rendering of Large
3D Cities

Alex Zhang*

Fraunhofer Singapore
Kan Chen†

Fraunhofer Singapore
Henry Johan‡

Nanyang Technological University
Fraunhofer IDM@NTU

Marius Erdt§

Nanyang Technological University
Fraunhofer Singapore

ABSTRACT

We propose a high-performance texture streaming system for real-
time rendering of large 3D cities with millions of textures. Our
main contribution is a texture streaming system that automatically
adjusts the streaming workload at runtime based on measured frame
latencies, specifically addressing the high memory binding costs
of hardware virtual texturing which causes frame rate stuttering.
Our system streams textures in parallel with prioritization based on
GPU computed mesh perceptibility, and these textures are cached
in a sparse partially-resident image at runtime without the need for
a texture preprocessing step. In addition, we improve rendering
quality by minimizing texture pop-in artifacts using a color blending
scheme based on mipmap levels. We evaluate our texture streaming
system using three structurally distinct datasets with many textures
and compared it to a baseline, a game engine, and our prior method.
Results show an 8X improvement in rendering performance and 7X
improvement in rendering quality compared to the baseline.

Index Terms: Real-time Rendering, Texture Streaming, Virtual
Texturing, 3D Cities

1 INTRODUCTION

Many organizations in recent years have introduced a 3D digital
twin of their local city to aid in geographic information system (GIS)
related activities. These 3D city models recreate real-world urban
environments with large quantities of texture images captured from
aerial imaging. Although current computer systems can render large-
scale 3D cities in real-time, they are limited by GPU memory when
rendering millions of textures hundreds of gigabytes in size. Further-
more, rendering performance is heavily impacted when overflowing
data is naively paged in and out of GPU memory. Current large-scale
rendering methods stream textures to the GPU on demand, adapt-
ing texture resolutions to mesh visibility and level-of-detail (LOD)
metrics. However, these methods have difficulties maintaining a
consistent rendering performance when GPU memory is allocated
at runtime, resulting in severe frame rate stuttering in some cases.

In this paper, we present a high-performance texture streaming
system for rendering 3D cities with large quantities of textures.
We focus on minimizing frame rate stuttering by amortizing tex-
ture streaming costs over time, and maximizing texture caching
performance for hardware virtual texturing with runtime memory
allocation. Our specific contributions are:

• A single-pass, multithreaded, GPU-assisted texture streaming
system that identifies and prioritizes textures for streaming based
on visual perceptibility, and minimizes texture pop-in artifacts
and uneven texture resolutions during rendering. We also propose
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a parallel, runtime texture caching scheme for hardware virtual
texturing.

• An adaptive texture streaming algorithm that automatically ad-
justs the texture streaming workload based on measured frame
latencies. It is robust to support different city dataset structures
and computer system performances and is intuitive for users to
set parameters.

• A mipmap color blending method to minimize texture pop-in
artifacts and preexisting mipmapping artifacts in city datasets.
We store original per-mesh colors in a City Colormap, which are
then interpolated with sampled colors based on displayed mipmap
levels.

• An optional mesh clustering scheme to generate texture atlases by
grouping nearby and similarly oriented meshes together. While
streaming a 3D city with over five million textures is directly
supported, using our proposed scheme greatly improves texture
streaming performance.

To evaluate our texture streaming performance and rendering
quality, we use three structurally different large city datasets, one
containing 40GB of compressed texture data, and another containing
56K large texture atlases with high geometry count. Our results
show a significant 8X improvement in rendering performance and
7X improvement in image quality compared to a baseline without
using our proposed method. We also compare our adaptive streaming
algorithm to that of our previous work [20], as well as the Unity game
engine’s texture streaming quality to determine the effectiveness of
our method. Overall, our technique allows fast texture streaming of
large city scenes with many more textures than previously possible,
with greatly reduced frame rate stuttering and greatly improved
rendering quality.

In our previous texture streaming system [20], we successfully
minimized frame rate stuttering, maximized texture streaming rate,
and mitigated texture pop-in artifacts. In this extension, we propose
a novel texture streaming algorithm that automatically adjusts tex-
ture streaming rate based on measured frame latencies, and show
that our new algorithms are more robust, more intuitive to set system
parameters, and achieve faster mipmap resolution refinement at com-
parable texture streaming performance. Additionally, we optimize
the mesh weight value contributions, provide new texture streaming
performance measurements using a rigorous benchmarking system,
create entirely new figures and tables, evaluate our new adaptive
algorithm in detail under the three city datasets, and compare it to
our prior work and the baseline based on measured performance and
rendering quality.

2 RELATED WORK

2.1 City rendering in GIS
Virtual globe visualization systems such as Google Maps and Cesium
render 3D city models and terrain on the web for GIS purposes. They
stream large amounts of texture and geometry as sets of tiles, each
adapted to a LOD suitable for real-time rendering on client systems,



Figure 1: Rendering of the Berlin city dataset. 13.7K texture mipmaps are loaded and cached in the sparse image at a rate of 56.6MB/s. Top inset:
The resolutions of loaded texture mipmaps are visualized as grayscale (i.e. lighter gray indicating higher resolution). Bottom inset: The sparse
partially-resident image showing the cached level 4 texture mipmaps.

based on screen-space and camera-space metrics [4,8], and based on
rendering time measurements [7]. These methods use pre-generated
texture coordinates for each tile, swapping them in and out of GPU
memory on demand, which results in numerous texture state changes
that impact rendering performance. Here are some other works
that can enhance our proposed texture streaming system. Image
epitomes [18] can be used to reduce repeated areas of scene textures,
minimizing texture memory space and transmission bandwidth. To
further reduce texture pop-ins when switching to higher resolution
mipmaps, structure transfer [5] can be used to introduce finer details
from high resolution mipmaps while maintaining color consistency.
Generating abstractions of building textures [10] to reduce texture
size may also be of interest.

2.2 Virtual texturing systems

Virtual texturing systems are designed to cache a relevant subset
of the scene texture in GPU memory for rendering, by moving
textures in and out of the cache based on geometric factors and
resource availability. Tanner et al. [16] proposed the geometry
clipmap to cache clipped portions of the terrain based on camera
distance. Cline et al. [3] proposed a texture streaming system based
on available system bandwidth and used a quadtree mipmap to cache
streamed textures. Lefebvre et al. [9] introduced a texture streaming
system for arbitrary meshes with GPU support and GPU visibility
determination.

Recent virtual texturing methods emulate virtualization of texture
memory, by sparsely allocating physical memory for virtual texture
blocks (called pages) required for rendering. Page address is trans-
lated per-fragment using an indirection texture that maps a page in
virtual address to a region in the physical texture cache [11]. Van
Waveren [17] proposed software virtual texturing as a mega-texture,
where the scene’s entire texture space is mapped in its virtual image
space, and provided solutions for texture filtering and page caching.
Widmark [19] proposed the procedural virtual texture to cache ter-
rain textures and reduce texture blending costs. Chen [2] improved
on the prior with adaptive virtual textures to support a very large
terrain. Mueller et al. [12] designed a system to compress and stream
object-space shading data for remote rendering, using a virtual tex-
ture with atomic GPU memory allocation. However, software virtual
texturing methods forsake texture filtering in hardware as physical
page boundaries and texture coordinates are not contiguous, hence,
robustly implementing anisotropic filtering will be difficult [13].
Additionally, page translations invoke multiple in-shader memory
accesses that can adversely affect performance.

2.3 Hardware virtual texturing
Hardware virtual texturing [13] is designed to mitigate some dis-
advantages of software virtual texturing through hardware support.
Page address translation is performed in hardware, reducing transla-
tion overheads and lowering the memory footprint. Implementation
is also simplified as page mappings are no longer handled by the
application. Schmitz et al. [14] apply hardware virtual texturing to
cache textures for point cloud rendering with predictive page man-
agement based on camera movements. Overall, hardware virtual
texturing is not widely researched in literature.

The sparse partially-resident image is an interface for hardware
virtual texturing on the Vulkan graphics API. In OpenGL, it is
named sparse textures, and in DirectX, it is named tiled resources,
with equivalent purposes and functionalities. The sparse image is
an image object with mipmaps and layers subresources, with the
distinction that memory can be mapped to subresource regions at a
predefined granularity. A simple example to use the sparse image
is to first allocate memory blocks for the destination subresource
regions, then bind (i.e. map) allocated memory blocks to those
destinations before copying in textures.

On current Windows systems, binding sparse image memory
blocks has a high GPU latency cost that causes severe frame rate
stuttering. In our tests, we observed a linearly increasing memory
block binding cost with every memory block bound, even more
so when memory blocks are bound sparsely and irregularly. We
suspect this memory binding cost is limited by the underlying sys-
tem’s display drivers, and we amortize this cost using our proposed
adaptive texture streaming method. The sparse image is designed
for mega-texturing purposes and it assumes that scene textures are
pre-generated into an atlas which maps to virtual texture coordi-
nates. To avoid this preprocessing step, we propose a multithreaded
sparse image caching scheme that semi-compactly packs textures at
runtime.

3 OUR TEXTURE STREAMING PIPELINE

Our texture streaming pipeline (Figure 2) manages texture loading
and rendering in real-time. It consists of several CPU and GPU
processes that run asynchronously with each other. The heart of the
pipeline is the rendering loop. It estimates the amount of texture
streaming work for this cycle, retrieves mesh visibility metadata,
streams mesh textures to the GPU, and renders the current frame.
Within the loop, a non-blocking texture streaming task group is
spawned to load designated mesh textures from secondary storage
and caches them in the sparse image on the GPU, all in parallel. Note
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Figure 2: Our single-pass texture streaming pipeline is made up of co-operating CPU and GPU processes. The dotted line boxes define data
storage, dashed lines (i.e. subprocesses 5 and 6) define a parallel process, and solid-colored boxes define an asynchronous task group. All
arrows indicate the flow of data or process. Red arrows indicate time-expensive data transfers or process calls between the CPU and GPU, and
the blue arrow indicates time-expensive data transfer between secondary storage and RAM.

that only one instance of the task group is active at one time. On the
GPU end, the fragment shader generates mesh visibility metadata
that identifies optimal texture LODs for loading, and a compute
shader compacts this metadata before it is retrieved. To meet our
requirement for high-performance texture streaming and rendering,
we choose to implement our system on the Vulkan graphics API
for explicit multithreading and synchronization. We also provide a
high-level algorithm (1) of our pipeline that may aid developers in
their implementation.

We design the texture streaming system to balance streaming and
rendering performance automatically. We minimize streaming cost
(i.e. the frame latency) by regulating the workload of every texture
streaming cycle. If the workload is too small, texture streaming rate
will be inhibited. If the workload is too large, rendering latency will
be impacted, causing frame stuttering. A large workload may also
increase texture load-to-display latency, causing displayed textures
to be no longer relevant to the camera view. Since GPU performance
can fluctuate throughout the rendering, due to viewing city areas of
different densities and due to general system performances, fixing
the workload limit is not ideal. Therefore, we propose to adaptively
adjust the workload based on past rendering performance. When the
workload limit is reached, the texture streaming task will end and
textures that are already streamed are displayed. In the following
sections, we will describe our texture streaming pipeline in detail.

3.1 Generating texture atlases
In this preprocessing step, individual mesh textures are packed into
uniform-sized atlases to improve sparse image cache utilization and
reduce texture file loading time. We propose a mesh clustering
scheme to group proximate meshes with similar normal orientations
together for texture packing. First, meshes are grouped by their cen-
ters within uniform rectangular grid regions, then within each region,
they are further separated into six orientation groups according to
the closest global axis and mesh normal alignment (Figure 3). We
define a mesh as a set of primitives with one texture map and assume
they are mostly planar. For non-planar meshes, we take the mean
of the mesh normals as its orientation. This procedure resembles
backface culling in geometries, as textures of back-facing meshes
are not streamed if they are not rasterized. Finally, meshes in each
orientation group have textures of the same height packed together
into a square atlas to improve space utilization and to maintain
mipmap UV coordinate alignment. Empty spaces in an existing atlas

are filled using textures (of the same height) from the next-in-order
mesh orientation group. This reduces the number of atlas files and
allows additional mesh textures to be cached at no cost. Overall, our
mesh clustering scheme minimizes cache utilization and improves
texture streaming performance as fewer and smaller texture files are
accessed and streamed.

Figure 3: An illustration of our mesh clustering scheme to generate
texture atlases for a city dataset. The black dotted lines indicate
uniform rectangular grid regions. The red, green, and blue arrows
are globally aligned axis. Within each grid region, building meshes
are separated into six orientation groups based on their closest nor-
mals alignment to the global axis. Back faces are grouped but not
illustrated.

3.2 Computing mesh visibility metadata

This subprocess in the fragment shader identifies visible meshes
and their texture LOD for streaming. We take advantage of the
raster pipeline to perform narrow phase visibility culling automati-
cally, including occlusion culling before the fragment shader stage
(via early z-test). In the fragment shader, a mipmap level and a
weight value are computed for every rasterized mesh and stored
in a MeshMetaData array buffer. Later in the rendering loop, this



array is compacted and copied to system memory for use in texture
streaming.

The mipmap level metadata defines the mesh texture LOD for
streaming. For each fragment that a mesh spans, the mipmap level
under anisotropic filtering is computed, as described in Hollemeersch
et al. [6], and the lowest mipmap level is selected as the mipmap
level metadata. In our system, we define two maximum anisotropy
levels Am and As. Am is the maximum anisotropy used to compute
the mipmap level metadata and As is the maximum anisotropy used
to sample the texture for rendering. In terms of texture streaming, Am
specifies the resolution range of loaded mipmaps in the scene, with
a higher value resulting in higher resolution textures being streamed
overall. When Am > As, texture mipmaps may be preloaded at
a higher resolution than what is required for rendering to reduce
texture pop-in effects. In our system, we define Am = 16 and As =
Am
2 .

The weight value metadata determines mesh texture inclusion in
the texture streaming process and the texture’s streaming priority,
based on the perceptual importance of the mesh. Under perspective
camera projection, we can associate the screen space size (i.e. frag-
ment count) of meshes with perceptual importance, since meshes in
the foreground with a larger fragment count are more perceivable
than faraway or partially occluded meshes. However, this design
does not anticipate displayed texture resolutions and human focus,
resulting in incongruent distributions of texture resolutions during
streaming. We propose a new streaming prioritization based on frag-
ment count, fragment distance from the camera, and loaded mipmap
levels to better account for human focus in the camera foreground
and to maintain an even distribution of texture resolutions in the
foreground to the background. We define the following per-fragment
weight W :

W = 1+8wd +8wm (1)

where W = 1 is the basic fragment count contribution, wd is the
fragment distance from camera contribution and wm is the displayed
mipmap level contribution. Per-fragment weights W of each rastered
mesh are atomically summed (i.e. using the atomicAdd function in
the fragment shader) to produce the mesh weight value metadata.
The ratio of contributions 1:8:8 places significant importance on
the mesh distance from the camera and its already loaded texture
mipmaps. We choose a value of 8 as it provides a reasonable number
of discrete levels to rank textures for streaming (e.g. 28 median
texture size in city datasets).

The fragment distance from camera contribution wd prioritizes
streaming of mesh textures in the foreground:

wd = (1− cw)
4

cw = min
(

1
gl_fragcoord.w

,1
) (2)

where cw is the homogeneous clip space w-coordinate accessed in
the fragment shader. It increases weighting for small or occluded
meshes near the camera that are quite perceptible to the viewer. This
assumes that the viewer’s focus is always in the foreground within a
view depicting both closeup and faraway meshes. This contribution
is scene-independent, and one may adjust the power value 4 to better
define the foreground.

The mipmap level contribution wm prioritizes streaming of
smaller mipmaps:

wm = min
(

M
Mmax

,1
)

(3)

where M is the displayed mipmap level and Mmax is the highest
mipmap level. It regulates texture resolutions within the camera
view to achieve a smooth distribution of mipmap resolutions from
the foreground to the background during texture streaming (Figure 4).

It also prioritizes streaming of lower resolution mipmaps for rapid
display when the GPU workload is high.

Figure 4: Rendering of the Helsinki city dataset comparing two con-
figurations of the per-fragment weight W . Top: Considering only the
fragment count contribution (W = 1). Bottom: Considering fragment
count, fragment distance from camera, and mipmap level contributions.
Our method indicates a smoother transition of texture resolutions from
the foreground to the background during texture streaming, while
the other shows incongruent texture resolutions between adjacent
meshes in the middle ground.

In addition to our streaming prioritization, we also reduce texture
pop-ins at the edges of the viewport by streaming textures outside
of the viewport at a low priority. Specifically, we render offscreen
at a larger FOV than the intended viewport FOV and assign a per-
fragment weight W = 1 for meshes that lie outside of the viewport.
This design anticipates arbitrary camera movements and allows the
system to stream additional textures when the GPU workload is
manageable.

3.3 Mesh metadata compaction

The MeshMetaData array buffer contains visibility information for
all meshes in the scene. It is a sparsely populated array as the
fragment shader only writes rastered (i.e. visible) mesh metadata at
the respective array indices. At the end of the fragment shader stage,
this array can be retrieved for texture streaming. However, copying
the entire array, which can be more than five million elements long,
into system memory is slow. Hence, we compact the sparse array
using a compute shader prior to transfer. We use a simple atomic
counter method [6], where each compute invocation, respective
to an index in the sparse MeshMetaData array, copies an element
contiguously into the output MeshMetaData array. Afterward, all
elements in the sparse MeshMetaData array are reset to prepare
for new mesh visibility metadata in the next frame. Note that the
compute shader is always run after completion of the fragment
shader stage.

Additionally, we propose a weight cutoff threshold τ to further
reduce the MeshMetaData array and consequently the number of
textures to stream. Small meshes with weights less than the defined
threshold τ will not be copied to the output MeshMetaData. For the
Berlin (atlas) dataset, we use τ = 150 which balances texture stream-
ing performance and streaming overheads. This threshold value
is directly proportional to the per-fragment weight contributions
defined previously.



Upon completion of the compute work, the compacted Mesh-
MetaData array is copied to system memory for texture streaming.
Note that we only retrieve the MeshMetaData array when the texture
streaming task group is ready to be invoked, instead of retrieving the
array every frame. Afterward, we sort it in descending weight value
order for texture streaming. In our implementation, we perform a
parallel CPU sort but one may prefer GPU sort if its overhead is
justified.

3.4 Estimating texture streaming workload
The first subprocess in a texture streaming cycle is to estimate the
texture streaming workload. Having a workload limit prevents over-
loading the GPU with excess memory binding commands, which
causes severe frame rate stuttering. It also limits the time spent
processing stale work that is no longer relevant to the current frame.
When the workload limit is reached, the texture streaming task group
will terminate. We propose two workload limits for early texture
loading termination: load time (fixed limit) and adaptive load size
(adaptive limit).

The load time limit defines a fixed amount of texture loading time.
In the context of operations, it is the minimum interval before new
texture streaming commands are submitted to the GPU. A shorter
load time results in a lower texture load-to-display latency, ensuring
that streamed textures are still relevant to the current camera view.
A longer load time allows the GPU to consume a larger batch of
streaming commands, improving overall streaming performance.
However, this may overload the GPU and increase texture load-to-
display latency. In our implementation, we set a maximum load time
of 16 milliseconds.

The adaptive load size limit defines the maximum size of the
loaded texture batch. It restricts the rate of textures transferred to
the GPU and their associated sparse image memory bindings, which
is the root cause of frame rate stuttering. The adaptive load size is
not fixed but rather adaptively adjusted every frame, based on recent
measurements of the rendering latency. This design anticipates
fluctuations of rendering performance, for example when viewing
dense and sparse city areas and when the cost of sparse image
memory bindings increases, and adjusts the texture streaming rate
accordingly so that frame rate stuttering is minimized.

To further manage the workload, we introduce an adaptive
mipmap bias to restrict loading higher resolution mipmaps when
the streaming bandwidth is low, as higher resolution mipmaps are
exponentially more expensive to stream. It also prioritizes streaming
smaller mipmaps and may defer streaming larger mipmaps depend-
ing on the streaming bandwidth. This design produces an even
distribution of mipmap resolutions for any camera view and allows
low-resolution mipmaps to be rapidly displayed especially under
fast-moving bird’s eye views. This mipmap bias value modifies the
sampled mipmap value metadata for texture loading.

The adaptive load size s directly controls texture streaming rate:

s = max(li · smax,smin)

li = clamp(li−1 + sign(−x)P∆t,0,1)

P = |x|+(10|x|)2 +(30|x|)3 +(50|x|)4

x = twi − tm

(4)

where smin and smax is the minimum and maximum load size in MB
respectively, l is the load factor clamped between 0 and 1, sign is a
function returning the sign of a real number, ∆t is the frame latency,
and x is the difference between the weighted maximum frame latency
tw and the maximum frame latency threshold tm. The adaptive
load size s controls texture streaming rate and is computed every
rendering cycle based on the relative change of frame latency. It has
a fixed limit between smin and smax and is derived from a normalized
load factor l clamped within the range of 0 and 1. During rendering,
the load factor l is incremented or decremented until x is minimized,

in other words, s will produce the optimal texture streaming rate as
the weighted maximum frame latency tw approaches the maximum
frame latency threshold tm. To put things simply, one can think of
tw as the average frame latency and tm as a user-defined threshold
constant. The polynomial P defines the exponential change in l
based on the magnitude of x. Through it, texture streaming rate
will be exponentially reduced after a spike in frame latency, and
likewise, steadily (or exponentially) increased when frame latency
remains below the threshold (left of Figure 5). The constants in P
are empirically found to work well for s and with other parts of the
adaptive streaming algorithm. At the end of the equation for l, we
introduce the frame latency factor ∆t to ensure a consistent rate of
change across computer systems. In our implementation, we set the
minimum load size smin to the size of a sparse image memory block
(i.e. the granularity of the sparse image selected by the graphics
API). We also set a large maximum load size smax = 64MB that will
not be reached by most systems. One may also use this variable to
hard limit the texture streaming rate to free up computing resources.

The weighted maximum frame latency twi reflects the maximum
frame latency with an exponential decay:

twi = max
(

twi−1 − (30d)2
∆t,∆t

)
d = max

(
twi−1 −∆t,0

) (5)

where d is the difference between the previous weighted maximum
frame latency twi−1 and the current frame latency ∆t, clamped to a
lower limit of 0. tw is designed to emphasize the spikes in frame
latency for the load size function s. When ∆t > twi−1 , twi will im-
mediately assume the high ∆t value, and when ∆t < twi−1 , twi will
(exponentially) decay towards the low ∆t value depending on the
magnitude of d. This widens the narrow spikes in frame latency
which last only a few frames so that the load factor l can be inte-
grated at smaller and more precise steps to meet the maximum frame
latency threshold tm. If tw directly assumes the spiky ∆t, texture
streaming rate will be overall reduced as l is frequently under or
overcompensating for the difference in frame latencies. We empiri-
cally derive the decay rate (30d)2 to produce more reliable l values
with fewer integration steps.

The maximum frame latency threshold tm defines the point when
the load factor l is reduced:

tm =

{
twa(1−0.85)+α(0.85), if twa > α

twa(1−0.5)+α(0.5), otherwise

twa =
∑

200
j=1 twi− j

200

(6)

where twa is the average of 200 previous samples of tw, and α is
a user-defined target maximum frame latency. The threshold tm is
derived from the linear interpolation of twa and α depending on
two conditions. When twa > α , tm will adhere closer to the target
maximum frame latency α , and when twa < α , tm will vary towards
the average of the weighted maximum frame latency twa. Since the
load size s is designed to change based on relative frame latencies,
we have to pin the threshold tm to a maximum frame latency desirable
to the user and also relative to tw. We introduce some variation to
tm as it produces a smoother change in the load factor l compared
to having tm = α , and this further reduces frame stuttering caused
by a sharp increase in texture streaming rate when the prior average
frame latency is low. We use 200 samples of tw to compute twa as it
best defines the average range of tw under two seconds.

The adaptive mipmap bias b limits the maximum resolution of



textures for streaming:

b = β · smoothstep(0.96tbl ,1.2tbu, tb)

tbl =
∑

40
j=1

(
twi(1−0.8)+min(tbli− j , twi)(0.8)

)
40

tbu =
∑

40
j=1

(
twi(1−0.8)+max(tbui− j , twi)(0.8)

)
40

tb =
∑

5
j=1 twi− j

5

(7)

where β is a user-defined maximum mipmap bias, smoothstep is the
Hermite interpolation function defined in the fragment shader, tbl
and tbu are respectively the lower and upper edges of the Hermite
function, and tb is the average of 5 previous weighted maximum
frame latency tw. The mipmap bias b is smoothly distributed (from
0 to β ) using the normalizing smoothstep function that captures
the fluctuations of tb between the tbl and tbu edges. These two
edges define the limits of the mipmap bias b and are computed by
weighting the mean of tw by a factor of 0.8 towards the minimum
or maximum tw over 40 samples, which is about one third of the
frames rendered in a second. We use 5 samples of tw for a smoother
variation of b compared to using only one sample.

The adaptive mipmap bias b is designed to increase when the
average frame latency tb is increasing, and decrease when tb is
decreasing (right of Figure 5). We designate a user parameter β

that scales the distribution of mipmap bias to better fit city datasets
with different mipmap size distributions. It provides another level
of control to optimize texture streaming, delaying the display of
higher resolution mipmaps to minimize frame rate stuttering. In
computing the edge values, we use a small number of 40 tw samples
to define the period under one second before b changes. This creates
a frequent but stable variation of the mipmap bias, allowing more
higher resolution mipmaps to be streamed while minimizing frame
stuttering. To further reduce frame stuttering, we lower tbl by a factor
of 0.96 which increases the average mipmap bias and maintains a
mipmap bias close to 0 when the streaming load is low. tbu is also
shifted by a factor of 1.2 to reduce the occurrence of high mipmap
bias unless necessary, relaxing the importance of selecting β values.
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Figure 5: Left : The change of load factor l based on x, representing
how much tw deviates from tm (Equation 4), assuming ∆t = 1ms. Right :
The mipmap bias b when tb increases, assuming β = 4, tbl = 0ms, and
tbu = 16.67ms (Equation 7).

3.5 Texture image loading and transfer
The conjoined texture loading and sparse image caching subprocess
loads texture images in secondary storage and transfers them to
the sparse image in GPU memory. We begin this subprocess by
parallelly iterating the MeshMetaData array in descending weight
order, then load and stage texture mipmaps in the system memory,
up to the defined workload limit. Afterward, we record texture copy
commands to transfer staged textures into specific sparse image

locations defined by our sparse image caching algorithm. We also
allocate GPU memory and record memory binding commands for
the appropriate regions in the sparse image. These commands will
be submitted to the GPU at the end of the subprocess. Note that tex-
tures are transferred to the GPU asynchronously thru direct memory
access (DMA) without further CPU intervention.

We design a texture state system to load texture mipmaps incre-
mentally. Each texture streaming task cycle loads only a mipmap
per mesh texture, starting from the initial mipmap level (i.e. the
defined lowest resolution) down to the optimal mipmap level (de-
fined in the MeshMetaData) modified by the adaptive mipmap bias.
Specifically, if the modified mipmap level is higher or equal to the
currently displayed mipmap level, then the next lower mipmap will
not load. This design allows gradual refinement of textures, rather
than immediately displaying the intended mipmap level, causing
texture pop-ins. For each texture, we define three atomic object
states in order: Initial, Active, and Final. Each object state will
progress to the next if conditions are met at the end of an iteration.

The Initial state indicates that a texture is loaded for the first time.
A unique sparse image location is assigned to the texture object des-
ignating the transfer destination for all its mipmaps. Then, the initial
mipmap transfer command is recorded and memory is allocated and
bound to the underlying sparse image location. Finally, the sparse
image texture coordinate pointing to this mipmap is updated in the
texture data buffer for fragment shader access. The Active state indi-
cates that the texture has a mipmap to be transferred. The next higher
resolution mipmap is transferred to the designated sparse image lo-
cation. Just like the Initial state, the transfer command is recorded
and appropriate sparse image memory is allocated and bound. The
texture data buffer is also updated. The Final state indicates that
the texture has transferred its base mipmap or is invalidated in the
sparse image cache.

As an optimization, we copy mipmaps into system memory at the
exact memory location in the image file to exponentially reduce file
transfer time during texture streaming, as opposed to copying the
entire image file into memory which can be megabytes in size. This
greatly improves texture streaming performance, especially when
requesting many smaller mipmaps for new camera views. To further
reduce file access time, one may also pack the scene textures (or
texture atlases) into a single file and directly access required memory
locations.

3.6 Caching textures in the sparse image

We propose a parallel sparse image caching algorithm to cache
loaded textures in GPU memory for rendering. It is intended for
city datasets with uniform and non-uniform texture dimensions that
are of powers of two. Our algorithm essentially packs textures with
the same maximum extent, max(width,height), together in the same
sparse image layer. For example, a layer designated with a maximum
extent of 32 can only store textures with extent combinations of 4x32,
8x32, 16x32, and 32x32. In each sparse image layer, textures are
uniformly placed in square regions where each region stores only
one texture. While some rectangular textures do not fit the square
regions optimally, this design is still necessary to align mipmap UV
coordinates for all textures in the layer.

During runtime, our sparse image caching algorithm requests an
available layer region to store a texture. If no layers are designated
with that texture’s maximum extent, or if previously designated
layers are filled up, the next available layer in index order will be
assigned. If all sparse image layers are assigned, the oldest layer in
a ring index order is assigned instead and its existing textures are
invalidated. Invalidated textures are no longer displayed and will
have to be reloaded in the future. We use an unordered map (i.e.
the stl::unordered_map data structure) to keep track of available
sparse image regions to insert new textures. The map defines a
key-value pair {extent,(layer, index)} that maps a unique maximum



texture extent to an available square region index at the sparse image
layer. To support parallel sparse image caching, we use a parallel
unordered map (i.e. the stl::unordered_map data structure extended
with parallel search and insert methods), and define layer and index
as atomic counters pointing to a sparse image layer (in a ring order)
and a square region index within that layer (in left to right, top to
bottom order). We also use a third atomic counter nextLayer to track
the next available sparse image layer for assignment.

Overall, our sparse image caching algorithm enables semi-
compact packing of textures and the use of atomic counters for
fast caching performance. The number of sparse image layers is
predefined and guarantees a bounded memory limit. One may better
utilize texture caching space by dedicating unique layers for rectan-
gular texture extents. However, this will further inflate the number
of sparse image layers and memory binding costs and thus impact
texture streaming performance.

3.7 City Colormap and texturing artifacts
The City Colormap buffer stores a color per mesh texture for the en-
tire city dataset downsampled from the original textures. It remains
permanent in GPU memory, acting as a color placeholder when
sampling textures not yet cached in the sparse image. However,
transitioning from a single mesh color to low-resolution mipmaps
produces significant texture pop-in artifacts. This distinct color
change is due to sampling errors in smaller mipmaps that are increas-
ingly erroneous, and also due to preexisting mipmapping artifacts
in city datasets such as erroneous sampling of black borders and
gamma adjustments. We propose to minimize texture pop-in artifacts
by linearly interpolating the sampled sparse image colors with the
original colors stored in the City Colormap, based on the displayed
mipmap level:

c =
(

1− M
Mmax

)
cs +

(
M

Mmax

)
co (8)

where cs is the sampled color, co is the original color, M is the dis-
played mipmap level, and Mmax is the maximum mipmap level of
the mesh texture. This method retains correct low-frequency colors
for smaller mipmaps while smoothly blending higher frequency de-
tails from higher-resolution mipmaps, significantly reducing texture
pop-in artifacts.

4 EVALUATION

Our texture streaming system performance and rendering quality
are evaluated using three large city datasets (Table 1). We as-
sess our adaptive streaming algorithms using a designed bench-
mark and show how the various system parameters (Table 2) affect
texture streaming and rendering performance. Rendering quality
in terms of texture pop-in errors is evaluated. We also compare
our new texture streaming system to our previous method [20],
as well as the Unity game engine. Our test system is equipped
with an Intel i7-8700K CPU, a Nvidia RTX 2080Ti GPU, and
a Samsung 970 EVO 1TB SSD, running on Windows 10 and
renders into a 3840×2160 resolution framebuffer. We provide a
video capturing real-time rendering results as part of the supple-
mentary material. You may also download a higher resolution re-
sults video here: https://drive.google.com/file/d/1UwAW_
2jWgVZf-ErBzpeKLc3GPF7Ni3cK/view?usp=sharing.

4.1 Benchmarking methodology
All of our texture streaming performance measurements are recorded
using a benchmark, where a virtual camera moves in a fixed path
through the city, covering sparse and dense building areas. The
benchmark is designed to thoroughly evaluate our texture streaming
system and imitate some aspects of real-world usage. We fix the
camera at a bird’s eye view (Figure 1), capturing buildings with

the highest mipmap resolutions in the foreground and the full range
of resolutions in the background. This allows us to fully evaluate
streaming performance and the evenness of mipmap resolution distri-
bution under our mipmap prioritization system. At four determined
points of the flythrough, the camera will pause for two seconds
before continuing, causing more high-resolution mipmaps to be
streamed. This tests our adaptive streaming algorithm’s performance
when transitioning between streaming lower and higher resolution
mipmaps. At another four determined points of the flythrough, the
camera will immediately switch to a new view, forcing the adaptive
streaming algorithm to catch up on the streaming work. This tests
the algorithm’s ability to minimize frame rate stuttering without
over-throttling texture streaming rate. Each benchmark is standard-
ized across different computer systems and for each city dataset. For
the Berlin and the Berlin (atlas) dataset, the benchmark duration
is 68.6 seconds, and for the Helsinki dataset, the duration is 43.7
seconds.

We measure the median, average, and maximum frame latency
and mipmap transfer rate to judge the overall streaming performance.
The average and maximum frame latency is used as an indicator of
frame rate stuttering. We can estimate the amount of frame stuttering
by taking the difference between the average frame latency without
texture streaming and the measured average frame latency. We can
also estimate the amount of frame stuttering from the maximum
frame latency value, where a large value will result in an observable
frame rate stutter. Here we take the maximum tw latency instead
for a more accurate result. The transfer rate measurement is a
performance indicator that shows the count and size of mipmaps
transferred per second. The relation of mipmap count and size can
indicate lower or higher resolution mipmaps being streamed when
different system parameters are used.

4.2 Texture streaming performance

The following charts (Figure 6) show the measurements of a bench-
mark for the Berlin (atlas) dataset, recording changes in the adaptive
streaming algorithm’s parameters and the resulting texture streaming
performance. Throughout the benchmark, we capture a measure-
ment at every 0.10423 seconds interval. The top-left chart shows
the weighted maximum frame latency tw and how it varies with the
maximum frame latency threshold tm to produce the load size. We
can see the changes in the load size and the proportional transfer
rates in MB/s based on how much tw deviates from tm. The top-
right chart shows the smoothstep function parameters tb, tbu (upper
edge), and tbl (lower edge) that control the mipmap bias. tb tends
to fluctuate near the lower edge when the frame latency is decreas-
ing or stabilizing, and near the upper edge when frame latency is
increasing, producing a relatively turbulent mipmap bias compared
to the load size. The rapid fluctuation in mipmap bias is designed to
regulate the number of high-resolution mipmaps streamed without
completely stalling mipmap refinement when the frame latency is
high, minimizing the perceivable texture pop-ins.

Frame latency is related to the load size to a certain degree. When
the average load size increases, the average frame latency also in-
creases, and well as the magnitude of frame latency spikes. We no-
tice a tendency of frame stuttering when switching to a new camera
view, caused by an abrupt increase in streaming workload, and also
randomly occurring stutters at different times of the same benchmark.
Unfortunately, these frame latency spikes cannot be fully eliminated
even when the load size is set to a constant low value of 0.05MB.
Hence, we conclude that binding sparse image memory blocks has
an unknowable system-level performance cost. Nevertheless, our
adaptive streaming algorithms can quickly react and minimize any
frame latency spikes without over-throttling texture streaming rate,
by rapidly adjusting the load size where necessary.

In the series of benchmarks (Table 3, Table 4, Table 5), we an-
alyze our adaptive texture streaming performance for the Berlin

https://drive.google.com/file/d/1UwAW_2jWgVZf-ErBzpeKLc3GPF7Ni3cK/view?usp=sharing
https://drive.google.com/file/d/1UwAW_2jWgVZf-ErBzpeKLc3GPF7Ni3cK/view?usp=sharing


Table 1: Attributes of the three city datasets that are used to evaluate our adaptive streaming system.

Dataset Triangles Geometry size (MB) Textures Texture size (GB) Format Texture extents (2x)

Berlin [1] 15,363,486 935 5,712,309 41.6 BC1 2 to 9
Berlin (atlas) 15,363,486 1092 233,110 40.8 BC1 9
Helsinki [15] 115,112,748 6096 25,354 3.5 BC1 8, 9

Table 2: Optimized system parameters used in all our texture stream-
ing performance benchmarks unless specified. Given any city dataset
and computer system, users will only need to specify the α parame-
ter and optionally fine-tune the streaming performance using the β

parameter.

Parameters Value Description

Load time 16ms Maximum load time
smin 0.065MB Minimum load size
smax 64MB Maximum load size

α 16ms Target maximum frame latency
β 8 Maximum mipmap bias
Fs 16 Anisotropic filtering level
τ 150 Mesh weight cutoff threshold

(atlas), Berlin, and Helsinki datasets, and compare them to a base-
line without adaptive texture streaming. Without adaptive streaming,
textures are streamed as fast as possible, producing the highest
texture transfer rate measurement. We also observe a significant
amount of frame stuttering after about 5 seconds into the bench-
mark, with maximum frame latencies surpassing 100ms, resulting
in a non-interactive rendering. With adaptive streaming (α = 12ms
in Table 3), the average texture streaming rate in MB/s is reduced
by 47% to support a low, stutter-free average rendering latency of
5.3ms, which is an 88% reduction from the baseline. The number of
mipmaps streamed per second remains similar to the baseline, and
even increases as α approaches 16ms, indicating the deferment of
streaming higher resolution mipmaps by our adaptive mipmap bias
algorithm. Adaptive texture streaming performance is also similarly
reflected for the Berlin and Helsinki datasets (α = 14ms in Table 4,
α = 25ms in Table 5). In the texture-heavy Berlin dataset, we even
see a 9% increase in mipmaps streamed per second which results
in a quicker display of lower resolution textures for new camera
views with fewer texture pop-ins. Additionally, frame stuttering is
significantly reduced in all three datasets, both from measured maxi-
mum frame latency and from detailed observations of the rendering.
We measure a 97%, 51%, and 80% reduction in maximum frame
latency using the α parameters of 12ms, 14ms, and 25ms in the
Berlin (atlas), Berlin, and Helsinki datasets respectively. Also from
the benchmarks, we can see that the texture transfer rate and frame
latency increase as the target maximum frame latency α increases,
supporting the design of our adaptive streaming algorithms.

4.3 Texture streaming parameters

To determine the performance, robustness, and ease of use of our
adaptive streaming algorithms, we evaluate the target maximum
frame latency parameter α in the three structurally different city
datasets. For each dataset, we tested a reasonable range of α values
that is about two times the average rendering latency without texture
streaming and fixed the β parameter to 8, which performs well for the
Berlin (atlas) dataset. Results for the Berlin (atlas) dataset (Table 3)
distinctly show a steady increase in frame latency and transfer rate
as α increases from 12 to 18. At α = 12, there is few observable
frame rate stuttering even under extreme camera movements, and
at α = 18, frame rate stuttering is noticeable during the benchmark.
We choose α = 16 for a better texture streaming performance to

suit our geospatial visualization needs. While small frame stutters
can occasionally occur when switching camera views, it is a worthy
tradeoff for increased texture streaming rate and reduced texture
pop-in artifacts. For other purposes that require smoother frame
rates, a lower α can be used.

Results for the Berlin dataset (Table 4) show a similar increase
in frame latency and transfer rate as α increases, albeit at a smaller
magnitude with substantially lower texture transfer rates compared
to the Berlin (atlas) results. This is due to the high texture file access
overhead since the Berlin dataset contains millions of individual
textures. For the Helsinki dataset (Table 5), texture transfer rate in
MB/s increases with α , but frame latency remains fairly constant.
Here, we use a higher α range due to the high average rendering
latency, as the Helsinki dataset has a much larger geometry count.
We noticed that higher resolution mipmaps tend to be delayed more
than those in the Berlin datasets, due to the presence of high (median
and average) mipmap bias during streaming. Since the Helsinki
dataset contains a larger texture extent on average compared to the
Berlin datasets, introducing a high mipmap bias will delay streaming
of higher resolution mipmaps. Therefore, we define the maximum
mipmap bias β parameter to accommodate datasets with different
mipmap extent distributions.

We evaluate the influence of the β parameter using the Helsinki
dataset with α = 30 (Table 6). As β decreases from 8 to 0, texture
transfer rate increases while frame latency remains relatively steady.
However, the maximum frame latency, as well as observed frame
rate stuttering, has substantially reduced when 2 ≥ β ≤ 6. This is
because the fluctuation of mipmap bias is within a smaller range
suitable for the dataset, where the adaptive load size algorithm
will not overcompensate by streaming many large mipmaps in the
subsequent time instances. To determine the β parameter, users can
take the default value of 8 and lower it until the mipmap presentation
delay is tolerable, or increase the value until the desired transfer rate
is met. Overall, our adaptive texture streaming system can adapt to
different datasets, greatly reducing frame rate stuttering, even when
using non-optimal parameters. System parameters can be easily and
intuitively adjusted by setting the maximum target latency parameter
α and the maximum mipmap bias parameter β .

Additional parameters (Table 2) can be tuned to further improve
streaming or rendering performance to better match the local sys-
tem’s computational bandwidth. The fixed load time of 16ms and the
maximum load size smax can be used to hard limit texture streaming
rate which reduces frame rate stuttering, and also can be used to
free up system resources. Likewise, adjusting the τ value modifies
the camera range of mesh textures being streamed, affecting the
maximum streaming cycle workload.

4.4 Rendering quality
Our texture streaming system minimizes texture pop-in artifacts and
maintains visual coherency of proximate meshes using our adap-
tive streaming algorithms, our mipmap color blending method, and
our streaming prioritization method. In a fly-through of the Berlin
(atlas) dataset that covers all areas of the city, we consistently ob-
served minimal frame rate stuttering and very few texture pop-in
artifacts. Texture mipmaps are rapidly streamed and displayed up to
the optimal mipmap level (at 16x anisotropic filtering) with minimal
perceivable texture pop-ins, except during some instances when the
camera is very quickly strafed, rotated, or snapped into a new view.



Table 3: Adaptive streaming performance for the Berlin (atlas) dataset
using various α parameter with β = 8.

Median Average Max

No adaptive algorithms

Frame latency (ms) 6.8 42.5 471.16
tw latency (ms) 27.03 56.22 471.16
Transfer rate (Mip/s) 7997 9628 32807
Transfer rate (MB/s) 74.96 79.95 207.55
Load size s (MB) 64 64 64
Mipmap bias b 0 0 0

α = 12ms

Frame latency (ms) 4.55 5.3 15.98
tw latency (ms) 9.53 9.73 17.36
Transfer rate (Mip/s) 8621.5 9297.1 22310
Transfer rate (MB/s) 41.82 42 93.67
Load size s (MB) 0.75 0.74 1.75
Mipmap bias b 0.49 1.31 8

α = 14ms

Frame latency (ms) 4.58 6.1 24.59
tw latency (ms) 10.91 11.01 24.59
Transfer rate (Mip/s) 7818 9574.7 21914
Transfer rate (MB/s) 41.96 47.38 136.87
Load size s (MB) 0.81 0.96 2.64
Mipmap bias b 0.4 1.21 8

α = 16ms

Frame latency (ms) 4.52 6.47 26.16
tw latency (ms) 12.21 12.26 26.16
Transfer rate (Mip/s) 8936.5 9788.26 21075
Transfer rate (MB/s) 51.15 51.94 146.8
Load size s (MB) 0.96 1.17 3.32
Mipmap bias b 0.38 1.2 8

α = 18ms

Frame latency (ms) 4.61 7.18 29.51
tw latency (ms) 13.29 13.37 29.51
Transfer rate (Mip/s) 8455 9815.76 25873
Transfer rate (MB/s) 46.3 53.02 154.32
Load size s (MB) 1.19 1.32 3.79
Mipmap bias b 0.4 1.16 8

Also when viewing city areas with high building densities or when
the streaming workload is too high, the adaptive streaming algo-
rithms may delay refinement of higher resolution mipmaps, or omit
streaming of low priority meshes completely. This leaves promi-
nent areas such as the foreground of the camera view with fuzzy,
low-resolution textures, which causes texture pop-in artifacts when
the streaming system eventually catches up. Generally, the delay in
texture refinement is still tolerable for already loaded textures of a
high resolution, especially under our mipmap color blending method.
However, fully delayed streaming of textures may cause the texture
resolution of proximate meshes to differ greatly, disrupting the vi-
sual coherency of meshes. Nevertheless, we can mitigate this effect
for prominent, foreground textures using streaming prioritization,
but ultimately, it is constrained by the system’s capabilities. We con-
clude that a high texture streaming performance is most important to
minimize texture pop-in artifacts, since any visible mipmap refine-
ment will be resolved quickly, but not at the expense of increased
frame stuttering, as it greatly disrupts visual coherency.

In the following figure (Figure 7), we show the effectiveness of
our mipmap color blending method compared to direct mipmap

Table 4: Adaptive streaming performance for the Berlin dataset using
various α parameter with β = 8.

Median Average Max

No adaptive algorithms

Frame latency (ms) 3.58 6.07 51.72
tw latency (ms) 16.37 16.86 51.72
Transfer rate (Mip/s) 14316 14943.75 29458
Transfer rate (MB/s) 15.98 16.69 43.45
Load size s (MB) 64 64 64
Mipmap bias b 0 0 0

α = 14ms

Frame Latency (ms) 3.71 4.99 25.13
tw latency (ms) 11.2 11.39 25.52
Transfer rate (Mip/s) 15680 16384.59 30354
Transfer rate (MB/s) 11.35 11.67 31.27
Load size s (MB) 0.37 0.79 3.74
Mipmap bias b 0.37 1.61 8

α = 16ms

Frame Latency (ms) 3.71 5.38 22.33
tw latency (ms) 12.26 12.39 35.11
Transfer rate (Mip/s) 17192 17486.05 31961
Transfer rate (MB/s) 12.24 12.78 29.18
Load size s (MB) 0.43 0.93 5.49
Mipmap bias b 0.34 1.46 8

α = 18ms

Frame Latency (ms) 3.67 5.21 26.59
tw latency (ms) 13.02 13.07 26.59
Transfer rate (Mip/s) 16610 17110.94 30636
Transfer rate (MB/s) 12.19 12.59 30.07
Load size s (MB) 0.55 2.01 10.78
Mipmap bias b 0.34 1.44 8

sampling to reduce texture pop-in artifacts. We capture a static
view at increasing mesh texture resolution per frame and measure
the differences of pixel color intensities between each frame under
both methods. From frames 0 to 7, we can see that direct mipmap
sampling produces a significantly greater change of color intensities
with a maximum mean squared error (MSE) of 438 compared to our
color blending method which produces a maximum MSE of 62. Our
method reduces maximum MSE by 86%, indicating a significant
reduction of texture pop-in artifacts, especially at lower mipmap
resolutions (shown in frames 1 and 2). Overall, our method man-
ages to retain low frequency, original mesh colors while gradually
introducing higher frequency texture details, greatly suppressing any
mipmapping artifacts.

4.5 Comparison with our previous method

Similar to our new texture streaming method, our previous method
[20] adjusts the workload per streaming cycle by computing the load
size s and mipmap bias b based on previously measured streaming
latencies. However, s and b are derived from streaming latency
measurements which are data and system dependent, using fixed
functions with parameters determined by the user to work optimally.
In our new method, we derive s and b based on the relative changes
in rendering latency, using adaptive functions that maintain these
changes in the load factor l. We also condense the number of system
parameters the user has to consider to two (the target maximum
frame latency α and the maximum mipmap bias β ) and adopt a
standardized weighted maximum frame latency tw as input to all
adaptive streaming functions. The parameters α and β corresponds



Table 5: Adaptive streaming performance for the Helsinki dataset
using various α parameter with β = 8.

Median Average Max

No adaptive algorithms

Frame latency (ms) 9.94 10.41 146.76
tw latency (ms) 18.7 18.25 146.76
Transfer rate (Mip/s) 1591 2366.22 16149
Transfer rate (MB/s) 33.63 34.32 92.02
Load size s (MB) 64 64 64
Mipmap bias b 0 0 0

α = 25ms

Frame latency (ms) 10.25 10.99 28.94
tw latency (ms) 18.74 18.46 38.64
Transfer rate (Mip/s) 1367 2288.61 14592
Transfer rate (MB/s) 16.52 24.71 99
Load size s (MB) 7.49 16.03 63.82
Mipmap bias b 0.75 1.56 8

α = 30ms

Frame latency (ms) 10.28 11.22 74.41
tw latency (ms) 18.49 18.38 74.41
Transfer rate (Mip/s) 1318 2260.06 12945
Transfer rate (MB/s) 21.09 25.32 103.91
Load size s (MB) 16.58 21.31 59.78
Mipmap bias b 1.09 1.81 8

α = 35ms

Frame latency (ms) 10.17 10.65 35.57
tw latency (ms) 18.44 17.81 35.57
Transfer rate (Mip/s) 1340 2277.58 12440
Transfer rate (MB/s) 26.57 27.5 97.15
Load size s (MB) 44.4 40.73 64
Mipmap bias b 0.94 1.78 8

to the ideal binding time and the maximum mipmap bias defined
in our previous method. The difference is that we more precisely
consider the frame latency instead of the streaming latency, as the
frame latency accounts for all GPU operations including the sparse
image binding time. Furthermore, adjusting α based on frame
latency is more intuitive for users as it is a common measurement.

We measure the rendering quality between our new and old meth-
ods using the same benchmarking setup (Table 7). Our new method
is visibly faster (shown in video) to refine textures to the highest reso-
lution, especially for textures prominently located in the foreground,
resulting in less visible texture pop-ins. Generally, texture streaming
performances of our new and old methods are quite comparable in
all three datasets. For example in the Berlin (atlas) dataset, the old
method’s transfer rate of 46.94MB/s is similar to our new method’s
transfer rate of 47.38MB/s under α = 14ms. While our average
frame latency is 13% higher, our maximum frame latency is 17%
lower which results in less frame stuttering. Also, the transfer rate in
Mip/s is lower in our method, indicating higher resolution mipmaps
being streamed. For the Helsinki dataset, we observed a 20% reduc-
tion of transfer rate in MB/s at similar average and maximum frame
latencies when using our new method (α = 30ms, β = 4). This is
because the fixed functions of the old method can be more efficient
when the system and dataset-specific streaming workload is known
but requires users to determine it and tune the system parameters
accordingly. In our new method, we can automatically determine
and adjust the streaming workload at runtime, making our method
more robust. Additionally, our new method is faster to determine and
refine texture resolutions which are more important than displaying

Table 6: Adaptive streaming performance for the Helsinki dataset
under various β parameter with α = 30ms.

Median Average Max

β = 0

Frame latency (ms) 10.14 10.92 147.09
tw latency (ms) 18.75 18.27 147.1
Transfer rate (Mip/s) 1606 2390.74 17147
Transfer rate (MB/s) 32.94 34.24 97.79
Load size s (MB) 30.25 28.56 64
Mipmap bias b 0 0 0

β = 2

Frame latency (ms) 10.17 11.41 26.1
tw latency (ms) 18.84 18.52 38.36
Transfer rate (Mip/s) 1316 2294.75 14589
Transfer rate (MB/s) 28.78 30.16 114.76
Load size s (MB) 11 14.29 35.39
Mipmap bias b 0.22 0.45 2

β = 4

Frame latency (ms) 9.94 9.99 34.02
tw latency (ms) 18.45 18.06 35.09
Transfer rate (Mip/s) 1314 2288.19 14320
Transfer rate (MB/s) 25.93 27.22 87.2
Load size s (MB) 11.76 15.72 37.14
Mipmap bias b 0.57 1 4

β = 6

Frame latency (ms) 10.19 10.84 37.5
tw latency (ms) 18.56 18.43 37.5
Transfer rate (Mip/s) 1364 2279.1 11733
Transfer rate (MB/s) 23.59 26.01 79.33
Load size s (MB) 10.72 13.94 31.01
Mipmap bias b 0.85 1.38 6

more higher resolutions textures.

4.6 Limitation

Since our adaptive texture streaming method automatically adjusts
the streaming rate based on rendering latency, it depends on having
constantly fluctuating frame latencies. It does not work well with
applications that require limiting the maximum rendering rate, most
commonly through vertical synchronization. In our testing of the
Berlin (atlas) dataset, using α = 18 with a 16.68ms rendering la-
tency limit, we measured a 43% reduction in texture transfer rate
at 30MB/s compared to our benchmark’s rate at 53.02MB/s. Nev-
ertheless, our adaptive streaming algorithm remains performant in
suppressing frame rate stuttering, rapidly reducing the workload
during periods of high rendering latency, while slowly increasing
transfer rate when frame latency is at the upper limit of 16.68ms.
Texture streaming rate increases slowly because rendering latency is
mostly invariant at the upper limit. We like to resolve this in future
work by automatically adapting our texture streaming rate to the
memory binding latency as well as the rendering latency.

Another common limitation is cache trashing, which occurs in
the sparse image cache when camera visible textures are being con-
stantly replaced by newer textures streaming in, due to insufficient
cache size to hold all visible textures. As textures are cached in a
ring buffer order, textures (that are still camera visible) in the oldest
sparse image layer are invalidated by the new textures streaming in,
causing this cycle to repeat. We can simply resolve this by increasing
the cache, specifically by increasing the number of sparse image
layers at the expense of increased sparse image memory binding



Table 7: Texture streaming performance of our previous method [20],
tested using the camera fly-through benchmark in this paper. The
system parameters specified in our previous paper are used.

Median Average Max

Berlin (atlas)

Frame latency (ms) 4.34 5.33 29.79
tw latency (ms) 10.43 10.51 29.79
Transfer rate (Mip/s) 8800 10121.74 32413
Transfer rate (MB/s) 42.79 46.94 171.19
Load size s (MB) 0.89 3.1 64
Mipmap bias b 0.83 1.51 10

Berlin

Frame latency (ms) 3.71 4.84 18.86
tw latency (ms) 10.32 10.47 28.62
Transfer rate (Mip/s) 17588 18539.91 30573
Transfer rate (MB/s) 10.74 11.85 32.21
Load size s (MB) 0.33 7.84 64
Mipmap bias b 0.7 1.35 10

Helsinki

Frame latency (ms) 9.96 10.27 33.89
tw latency (ms) 18.8 17.98 33.89
Transfer rate (Mip/s) 1667 2384.52 16175
Transfer rate (MB/s) 33.1 34.2 92.85
Load size s (MB) 64 55.06 64
Mipmap bias b 0 0.06 10

time and reduced texture streaming performance.

4.7 Comparison with the Unity game engine
Game engines such as Unity and Unreal are widely adopted to pro-
duce and visualize geospatial data. They feature texture streaming
capabilities to handle scenes with large amounts of texture data. We
briefly compare Unity’s (v2020.2.0) texture streaming and rendering
capabilities to ours, using the Helsinki dataset with a benchmark
that moves the camera from a bird’s eye view to a closeup view.
Unity’s texture streaming parameters are also set similarly. From the
Unity rendering (provided in video), we can see mesh textures being
initially presented at very low resolutions with erroneous mipmap
colors. As the camera moves closer to the meshes, textures are
quickly refined to the highest resolution which causes texture pop-
in artifacts. They are refined in an arbitrary order which causes
low-resolution, blotchy areas in the scene (Figure 8). Compared
to Unity, our adaptive streaming and color blending method con-
sistently refines mesh textures at all mipmap levels with minimal
texture pop-ins. In terms of rendering performance, we are unable to
make a fair comparison as Unity appears to allocate GPU memory
in advance for texture streaming.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed an adaptive, multithreaded, GPU-
driven texture streaming pipeline for high-performance texture
streaming. Our main contribution is an algorithm that automati-
cally and adaptively adjusts texture streaming workload based on
measured frame latencies, minimizing sparse image memory bind-
ing costs and frame rate stuttering. Our pipeline determines mesh
visibility and streaming priority in shader and caches textures in
the sparse image semi-compactly in parallel at runtime, without
requiring a preprocessing step. Furthermore, we significantly reduce
texture pop-in artifacts by blending sampled colors with the original
mesh colors stored in a City Colormap based on mipmap levels. We
also proposed to generate texture atlases based on similarly orienting

normals to improve texture streaming performance. Our new method
indicates clear improvements in texture streaming rate and rendering
quality compared to the baseline, the Unity game engine, and our
prior method. It is also robust to support different city datasets and
computer systems with intuitive and easy-to-tune system parameters.

For future work, we like to explore the idea of further reducing
frame stuttering by explicitly amortizing the texture streaming work-
load over time. Currently, we specify a fixed time limit for each
cycle of texture streaming, and adaptively adjust the load size and
mipmap bias to indirectly delay streaming work over time. However,
there may be a case involving many texture streaming cycles with
small workloads causing GPU overload, and we like to resolve this
issue by adapting workload across time.

We also want to explore how well our texture streaming approach
performs in general scenes, specifically, scenes with close-up camera
view with higher resolution textures. We believe our proposed ap-
proach can be directly applied to general scenes, as mesh occlusion
and perceptibility are already considered during texture streaming.
To further minimize frame rate stuttering when streaming many high-
resolution mipmaps with extents over 1024x1024, we propose to
stream them at smaller discrete subregions, taking into account sub-
region resolution distributions and texture file accesses to improve
rendering quality and performance.

In our current texture streaming pipeline, we use a 4090x4090
City Colormap texture for the Berlin (atlas) dataset to sample original
mesh colors in shader. As arbitrarily sampling a large texture can
impact rendering performance due to memory cache misses, we
recommend using a more cache-aware method when sampling large
textures frequently. We want to explore permanently caching per-
mesh colors in the mip tail regions of the sparse image which should
facilitate efficient memory management.

APPENDIX

This article is an author accepted version. You can find the published
version at: https://doi.org/10.1007/s00371-021-02152-z.
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Figure 6: Our texture streaming system performance over 68 seconds for the Berlin city (atlas) dataset. Top-left : Measurements of the weighted
maximum frame latency tw and the maximum frame latency threshold tm, which affects the load size s. Top-right : Measurements of the average
weighted maximum frame latency tb, the lower edge tbu, and the upper edge tbl , which affects the mipmap bias b. Middle: Measurements of the
load size s and the mipmap bias b. Bottom: Measurements of texture streaming rate in megabytes transferred per seconds and in mipmaps
transferred per second.



Algorithm 1: High-level pseudocode for our texture streaming pipeline.
// Texture streaming operations in the rendering loop.
while isRendering do
// Invoke compute shader to compact mesh metadata (Section 3.3).
// Synchronization: Run after fragment shader stage (Section 3.2).
InvokeCompactMetadata();

// Compute the adaptive load size and mipmap bias (Section 3.4).
(s, b)←− EstimateWorkload();

// Check if a texture streaming task is running.
if isStreaming = false then
// Retrieve the compacted mesh metadata and store in array (Section 3.3).
// The array element type is (mipmap level, weight value, meshID).
arrayMetadata←− RetrieveMetadata();
// Sort the array by descending weight value.
SortArray(arrayMetadata);

// Enqueue a texture streaming task for asynchronous execution.
// The atomic boolean, isStreaming, allows only one concurrent instance of the task.
begin asynchronous task

isStreaming←− true;
// Set invalidated mesh textures to not be sampled in shader.
UnloadTextures();
// Load visible mesh textures into the sparse image.
LoadTextures(arrayMetadata, s, b);
isStreaming←− false;

end
end

end
// Load and cache mesh textures in the sparse image.
Function LoadTextures(arrayMetadata, s, b):

loadedBatchSize←− 0;

parallel for metadata ∈ arrayMetadata do
texture←− listTextures[metadata.meshID];
// Managing texture states to load texture mipmaps (Section 3.5).
if texture.state 6= Final then

mipLevel←− -1;

if texture.state = Initial then
// Read image metadata (e.g. image extent and miplevels).
LoadImageMetaData(texture);
// Set the initial mipmap level to load. We use the 4x4 mipmap.
mipLevel←− texture.mipLevelMax;
texture.state = Active;

else if texture.state = Active then
if texture.mipLevelSampled + b < texture.mipLevel then
// Specify the next higher resolution mipmap for streaming.
mipLevel←− texture.mipLevel − 1;
// Set to Final state as the highest resolution mipmap will be streamed.
if mipLevel = texture.mipLevelMin then

texture.state = Final;
end

end
end
if mipLevel 6= -1 then
// Stop streaming textures when the adaptive load size is reached.
if loadedBatchSize > s then

break;
end
// Load the mipmap image data.
LoadImageData(texture, mipLevel);
loadedBatchSize←− loadedBatchSize + texture.dataSize

// Cache the loaded mipmap in the sparse image (Section 3.6).
CopyToSparseImage(texture, max(texture.width, texture.height));

end
end

end
return



Figure 7: Frame captures of the Berlin (atlas) scene comparing di-
rect mipmap sampling and our color blending method. Left column:
Sampling the sparse image directly. Right column: Blending sam-
pled colors in the sparse image with original mesh colors (shown in
frame 0) stored in the City Colormap. Frames 1 to 7 indicate progres-
sive sampling from the base sparse image mipmap level. The mean
squared error (MSE) between the current and the previous frame is
indicated.

Figure 8: Comparison of rendering quality during texture streaming
between Unity (left) and our method (right). In Unity, texture pop-ins
are visible as low resolution mipmaps are immediately refined into
high resolutions ones. In our method, we refine mipmaps at all levels
using our mipmap blending method and adaptive algorithms, resulting
in less texture pop-ins and more uniform texture resolutions.
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