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Abstract Currently, Air Traffic Control (ATC) systems are reliable with automa-
tion supports, however, the increased traffic density and complex air traffic situa-
tions bring new challenges to ATC systems and air-traffic controllers (ATCOs). We
conduct an experiment to evaluate the current ATC system and test conflict reso-
lution automation and tactile user interface to be the inputs of the future ATC
system. We propose an Electroencephalogram (EEG)-based system to monitor and
analyze human factors measurements of ATCOs in ATC systems to apply it in our
experiment. The EEG-based tools are used to monitor and record the brain states of
ATCOs during the experiment. Real-time EEG-based human factors evaluation of
an ATC system allows researchers to analyze the changes of ATCOs’ brain states
during the performance of various ATC tasks. Based on the analyses of the
objective real time data together with the subjective feedback from ATCOs, we are
able to reliably evaluate current ATC systems and refine new concepts of future
ATC system.
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1 Introduction

Although performance and reliability of current Air Traffic Control (ATC) systems
has been improved with automation supports, the increased traffic density and
complex air traffic situations bring additional requirements and new challenges to
ATC systems and air-traffic controllers (ATCOs). To design a future ATC platform
which can provide more effective and robust handling of heavy traffic situations,
states of art technologies like touch and tactile human computer interface, inter-
active 3D situation displays and advanced CRA software will be integrated to
current ATC platform. However, the standard evaluation method that uses ques-
tionnaires after each assessment can only give an overall rating of the performed
task. It cannot tell designers how the workload and emotions are changing during
the task performance in a complex traffic situation. This information may be esti-
mated from some other performance factors, but it cannot be done in high time
resolution using traditional methods. So there is a need for the tools to objectively
estimate how novel interfaces affect ATCOs during operations. To solve this
problem, we propose to use reliable brain computer interface (BCI) to measure
performance of ATCOs in different ATC experiments. By using such bio-signal
technology with standard evaluation methods, we can enhance and refine design
and development of a new ATC platform. To our best knowledge, we are the first to
develop real-time workload, emotion and stress recognition algorithms that use
fewer electrodes and have good accuracy that could be used for ATM system
evaluation. A real-time brain states monitoring system in which emotion, attention,
workload, and stress recognition algorithms can be recognized in real-time is
applied for evaluation of the future workplace of ATCOs.

We conduct an experiment to evaluate the costs and benefits of conflict reso-
lution automation and tactile user interface in future ATC systems. In the user
study, we evaluate the current ATC system with conflict resolution automation and
tactile user interface used as inputs. ATCOs and students with ATC knowledge are
instructed to complete ATC tasks in three conflict resolution aid scenarios including
reliable, unreliable, and manual conditions with or without tactile user interface.
During this user study, objective human factors measurements including mental
workload, stress, and emotion of ATCOs while performing ATC tasks are obtained
real time using an Electroencephalogram (EEG) device.

In this paper, we propose an EEG-based system to monitor and analyze human
factors measurements of ATCOs in ATC systems. The EEG-based tools are used to
monitor and record the brain states of ATCOs during the experiment. In subjective
human factors studies, the data of mental workload, stress, emotion et al. are
obtained through questionnaires that are administered upon completion of each task
or/and after an experiment. However, this method only offers the overall evaluation
of ATCOs performance. Real-time EEG-based human factors evaluation of an ATC
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system allows researchers to analyze the changes of ATCOs’ brain states during the
performance of various ATC tasks. The data can be analyzed during or at any time
interval starting from 1/32 s. Machine learning techniques are applied to the EEG
data to recognize levels of mental workload, stress and emotion during each ATC
task.

2 Related Work

Air traffic controllers (ATCOs) have to handle a significant amount of information
that has to be interpreted and analyzed in a time critical manner. The increase in air
traffic density is becoming a major issue in air traffic control. As reported by
Sheridan [1] and International Civil Aviation Organization [2], worldwide traffic
density will be up to double in 2025 compared to 2006. Given the limited airspace
available, the possibility of having more air traffic conflict is unavoidable [3]. Under
this circumstance, ATCOs will inevitably need a better support to overcome their
cognitive limitations in handling more aircrafts in airspace. Providing support
through automation is considered to be an effective solution to minimizing the
workload imposed on ATCOs [4]. Endsley and Rodgers [5] discovered that when
the air traffic increased, the controllers’ awareness of each aircraft declined rapidly
and when the workload was excessive, operational errors appeared. Recent research
showed that conflict resolution aid (CRA) software has the potential to support
ATCOs in resolving air traffic conflict in an effective and efficient manner [6]
regardless of its imperfection [7] by advising ATCOs all the possible maneuvers.
The future work place should therefore be designed to reduce mental workload and
stress of ATCOs for optimal performance.

In research and development of human-machine interfaces, the evaluation of
workload is a key point. Workload is described as a noticeable relationship between
the human cognitive capacity and the effort required to process a particular task [8§].
There are mainly three classifications for measurement of workload: subjective,
physiological, and performance-based measures [9, 10]. Subjective measurement of
levels of workload is based on the use of question-answer type response to measure
the amount of workload a person feels during a task.

Currently, there are many subjective measure procedures designed to evaluate
the mental workload as NASA Task Load Index (TLX) [11], Subjective
Assessment Technique (SWAT) [12], and Cooper—Harper Scale [13]. NASA-TLX
uses mental workload, physical demand, temporal demand, performance, effort, and
frustration as six dimensions scales to evaluate mental workload. SWAT uses
different three dimensional scales time load, mental workload, and psychological
stress load as three discrete levels. But, Hill et al. [14] have proved that NASA-TLX
is superior to SWAT in terms of measurement sensitivity especially for measure-
ment of low workload.

Physical workload is the measurable portion of physical response of body when
performing a given task and is affected by a range of factors. These physical
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responses include brain activity, cardiac activity, respiratory activity, and eye
activity. Performance-based measurement of workload relies on examining some
key parameters during a specific task which can reflect the capacity of a subject. In
physiological measurement, electroencephalogram (EEG) interface is more suitable
for monitoring people’s mental workload because that EEG signals are directly
captured from brain activity. EEG-based analyses have been widely used in clinical
diagnosis of mental diseases and in bioengineering research. A number of
EEG-based methods and corresponding applications are designed and implemented
in order to recognize the user’s workload levels [15, 16]. In [17], mental workload
is evaluated in online EEG monitoring during the security surveillance task.
Comparing the mental workload index with the error rate for the subjects, the
correlation coefficient is approximately 0.7, which indicates that when the workload
increases people have a tendency to make more errors. The correlation between
workload and EEG signals has been proved in [18, 19]. In [18], the driver’s mental
workload is significantly correlated with theta band power and alpha band power. In
different driving tasks, the frontal theta activity shows significant increases when
working memory load increases. In another experiment studying the workload and
fatigue in aircraft pilots [19], increased EEG theta band power and decreased alpha
band power are observed in high mental workload comparing with the low mental
workload. Additionally, in [19] it is shown that when the pilots have high mental
workload and mental fatigue, their EEG theta band power as well as the delta and
alpha bands power increases.

In this research, the EEG-based workload recognition, subjective user studies,
and task performance are used together for evaluation of ATCOs’ workload in
different scenarios.

3 EEG-Based Workload Recognition

3.1 Feature Extraction

In our previous work [20], the real-time EEG-based brain states monitoring system
CogniMeter is proposed to recognized emotion, workload, and stress. So, in this
paper, we implemented the same algorithm for ATCOs’ mental workload recog-
nition based on FD and statistical features.

FD measures the complexity and irregularity of time series [21]. It can be used as
an index for characterizing the complexities of EEG signals. For a regular signal, the
fractal dimension value is low. If the signal becomes irregular, the fractal dimension
value increases accordingly. Wang et al. [22] proposed to use Higuchi fractal
dimension to recognize different arithmetic mental tasks from EEG. It is also used in
EEG-based serious games to identify attention level. In this paper, the Higuchi
algorithm is used to calculate FD feature for real-time workload recognition.

Statistical features are widely used in EEG based brain states recognition
including emotion recognition algorithms [23]. Six statistical features such as mean,
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standard deviation, mean of absolute values of the first differences, mean of
absolute values of the first differences of normalized signals, mean of absolute
values of the second difference, and mean of the second differences of the nor-
malized signals are extracted from EEG for emotion recognition.

3.2 Mental Workload Recognition

The mental workload recognition algorithm has been proposed in [24], in which the
algorithm has been tested on the EEG database with different feature combinations
and classifiers. For different feature combinations, the average accuracy of SVM
classifier is 9.56 % higher than k-NN classifier based on mental workload EEG
data. By combining statistical and FD features and using SVM classifier, the best
accuracy is 90.39 % for 2 levels mental workload recognition and 80.09 % for 4
levels mental workload recognition. Therefore, in this experiment, we use FD and
statistical features calculated from 14 channels and SVM classifier for mental
workload recognition.

EEG data with

Workload Label Real-time EEG Signal

Y

‘ Bandpass Filter

Bandpass Filter

FD and Statistical Feature Pl FD and Statistical Feature :
Extraction . Extraction :
» Training Trained SVM Workload :
{ SVM Classifier — R nition Model .
Recognized
Workload
Calibration Real-time Recognition

Fig. 1 The overall diagram of calibration and real-time brain states recognition algorithms for
evaluation of mental workload [20]
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The subject-dependent real-time workload recognition system consists of two
parts: calibration and real-time mental workload recognition algorithm. The overall
diagram of calibration and real-time workload recognition algorithms is shown in
Fig. 2. In calibration, EEG data are labeled with different levels of mental workload
for workload recognition correspondingly. Then, the EEG data are filtered, the
corresponding features are extracted and the support vector machine
(SVM) classifier is trained. After that, during real-time workload recognition, EEG
signals are filtered and the FD and statistical features are extracted using a 4 s
sliding window with 3 s overlapping. Next, new data features are input into the
SVM classifier model trained in calibration. The classifier can recognize mental
workload level based on each 4 s EEG signals input (Fig. 1).

4 Experiment

A preliminary experiment is designed and implemented to study the human factor
in current ATC work place with some new features. 31 ATCOs and 5 students with
ATC knowledge participated in the current user study and provided a
signed-consent form that was approved by NTU IRB. All of them have received
training of air traffic control and none of them has history of mental illness.

All participants were equally divided into three groups: Non-Display, Display,
and Trajectory Prediction. Non-Display group was the baseline condition where
participants were only equipped with the CRA. Participants in Display group were
provided with the CRA and an additional display that depicted aircraft profile. In
Trajectory Prediction group, participants were equipped with the CRA as well as an
additional display that showed the prediction of aircraft trajectory including climb
and descend rate information.

In every group, each participant performed ATC tasks in three CRA conditions:
Manual, Reliable and Unreliable. In the reliable condition, the CRA was able to
provide correct advisories to all the potential conflicts. In the unreliable condition,
the maneuvering advisory provided an incorrect resolution advice that led to a
conflict. In both reliable and unreliable CRA conditions, there was a conflict res-
olution advisory for each conflict and participants were free to either accept or reject
the advisory by clicking a respective button. In the manual condition, participants
were asked to resolve the potential conflicts by providing their own resolution
maneuvering instructions.

In the experiment, there were three one-hour ATC scenarios corresponding to
the three different CRA conditions. A balanced Latin square was adopted for the
counterbalancing of CRA conditions to deal with any carry-over effects. In each
scenario, participants were required to communicate with the pseudo-pilots to issue
appropriate altitudes, to maintain separation between aircraft, to accept all aircraft
that entered their sector, to hand-off aircraft that left their sector and to issue the
correct radio frequency change.
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4.1 Brain Computer Interface

In our experiment, Emotiv headset [25] is used to capture the users’ EEG signals
wirelessly with the USB receiver. It is a popular low-cost EEG device widely used
for research including usability testing, neural marketing, serious games, etc.
Emotiv EPOC has 14 channels located at AF3, F7, F3, FC5, T7, P7,01, O2, P8, T8,
FC6, F4, F8, and AF4 as shown in Fig. 2. During experiment, the EEG-based
mental workload recognition system records EEG signals and recognizes ATCOs’
workload in real time.

4.2 Workload Calibration and Recognition

As real-time EEG-based brain state recognition algorithms are subject dependent,
calibration is required before real-time recognition. For calibration, four Stroop
color-word test with different settings (congruent/incongruent ink colour or time
limit) is used to induce different levels of workload. Each part of the test lasts for
1 min, and subject needs to fill a prompted questionnaire to evaluate his/her mental
workload level on the scale from 1 to 9 and to describe his/her feelings in words as
shown in Fig. 3. The calibration protocol using the Stroop color-word test is shown
in Fig. 4. In the “Introduction” section, the subjects are briefly explained about the
Stroop color-word test and get familiar with it; followed by the “Rest” section,
which is used to record EEG data when the subjects are in the relaxed state. Then
the subjects perform the Stroop test with three different levels and the
self-assessment for each level is done at the end of each section as described above.
To induce low workload, the word’s meaning is the same with the word’s font color
(Congruent Section). To induce medium workload, the word’s meaning is not the
same with the word’s font color (Incongruent Section 1). To increase workload to a
higher level, the subject needs to react to the incongruent word within the limited
time (Incongruent Section 2).

After calibration, the EEG data recorded during four tests were used for training
of classifiers for each subject. Then, the EEG-based workload monitoring system

Fig. 2 The Emotiv brain
computer interface. a The
location map of 14 electrodes
based on international 10-20
system. b Emotiv EPOC
device records EEG signal at
sampling rate 128 Hz with
frequency response between
0.16 and 43 Hz

(a) (b)
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Fig. 3 Screenshots of the mental workload calibration interface and questionnaire interface

Fig. 4 The calibration protocol for EEG-based mental workload recognition

Stroop Test / Rest Selfl
1 min Assessment
[ w/EEG Recording
[ wi EEG Recording
C I I
Introduction Rest Section Section | Section 2

can recognize subject’s mental workload each second. In Fig. 5, on the left, the
subject’s workload is visualized on the dynamic meter in real time. Besides color
representation such as “red” color used for high workload and “green” color used
for low workload, there is a word in the center of each meter to describe current
workload level. After a completing of monitoring, a workload levels distribution
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Fig. 5 Screenshot of EEG-based workload monitoring system. Left meter shows that current
workload level is high. Right diagram shows overall distribution of different workload levels
during the task performance

diagram can be generated to summarize the overall workload level during the task
performance as it is shown in Fig. 5 on the right. This real-time workload moni-
toring system helps researcher to do more insightful analysis of subject’s perfor-
mance during ATC experiment.

4.3 ATC Simulation

In our current user study, we evaluate the current ATC work place and test inter-
active touch display that is the input of the development of the future ATC work
place. The ATC simulator that used in our experiment is shown in Fig. 6. The middle
monitor is used to display the primary radar informaiton. On the right side of the
radar display, the monitor shows the Flight Progress Strips (FPS). FPS is an
automation tool that provide aircraft updates including the latest altitude clearance,
flight route as well as estimated outbound and inbound time for all departing and
arriving aircraft, respectively. On the left side, a conflict resolution aid
(CRA) display is intergrated to the current work place to support ATCOs in
resolving conflict. The CRA is an automation aid that could advise ATCOs on the
resolution of a potential conflict about 2 min in advance. In front of ATCOs, there is
an interactive touch display to help ATCOs to understand the airspace situation. This
display provides ATCOs with the information of aircraft speed profile, climb and
descend rate along the time axes. During the experiment, the performance of per-
centage of resolved conflict and conflict resolution time are measured automatically
through the data obtained from the simulator. Upon completion of each experiment
scenario, the NASA-TLX questionnaire is used to measure mental workload of
ATCOs. The EEG data are recorded throughout the experiment. The results of the
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Fig. 6 The air traffice control work place integrated with interactive touch display and brain
computer interface

study will drive the refinement and further development of both hardware config-
uration and software development.

5 Preliminary Results

Currently, we analyze the user study data of the ATC work place for three groups
(Non-Display, Display, and Trajectory Prediction) in the three CRA conditions
(Manual, Reliable and Unreliable). We studied the relation between the data
received using traditional NASA-TLX method and the workload rating method
used to label EEG data in the proposed EEG-based system for human factor study.
Both methods were administered after each scenario. This analysis allowed for
direct comparison between NASA-TLX and the proposed EEG-based evaluation
system. Table 1 shows the correlation of workload rating received in 1-9 scale and
NASA-TLX workload calculated after completion of each scenario of the experi-
ment. Generally, the two evaluation methods were found to be highly correlated in
most of the simulations. Only in unreliable CRA condition of non-display group
and trajectory prediction group, the correlation between workload rating and
NASA-TLX resulting data was not significant; however, the trend of positive
correlation between the two methods’ data in this condition could still be observed.
These findings confirm that the method used for labeling of the EEG data with
workload levels produces labels which are correlated with NASA-TLX workload
evaluation data. Furthermore, with the reference to the labeling of the EEG data
with workload levels, the EEG-based workload recognition algorithm can be used
to calculate the workload levels in real time through all recorded EEG data with
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Table 1 Correlation .analysis Manual Reliable Unreliable
peveen Yorkload rating and - TNC Gisplay | r= 0847 | r= 0748 r= 0415
groups (non-display, display, p=0.001* |p=0.004* p=0.130
and trajectory prediction) and ~ Display r=0.661 r=10.590 r=0.716
three CRA conditions p = 0.019* p = 0.043* p = 0.009%*
(manual, reliable and Trajectory r=0.669 r=0.529 r=0.258
unreliable) Prediction p =0.017* p = 0.077** p =0419

*Significant at o = 0.05; **Significant at o« = 0.1

high time resolution. Thus, the EEG-based workload evaluation has been proven to
validly assess workload and has a strong benefit since it could provide real-time
workload data corresponding to the tasks performed throughout the experiment.

6 Conclusion

In this paper, we propose novel EEG-based tools for human factor study in Air
Traffic Control (ATC) systems. The proposed system allows for recognition of
mental workload, stress, emotions of subjects during the performance of ATC tasks
to assess novel automation systems for future ATC. The EEG-based brain state
recognition algorithms are implemented using machine learning techniques. We
analyzed relation between mental workload calculated wusing traditional
NASA-TLX method and the method used to label EEG data with different work-
load levels. It was found that the data are highly correlated in most of the simu-
lations. Thus, the EEG-based system can be used to recognize workload during the
task performance at any time. By utilizing the proposed EEG-based system, true
understanding of ATCOs’ working pattern can be obtained. Based on the analyses
of the objective real time data together with the subjective feedback from ATCOs,
we are able to reliably evaluate current ATC systems and refine new concepts of
future ATC system.
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