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Plan of the talk

1 Crash course on quantum computing
2 Simon’s problem
3 Factorisation
4 The Hidden Subgroup Problem (HSP)
5 Quantum safe cryptography
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The qubit 3

Classical bit: b 2 {0, 1}

Probabilistic bit

Probability distribution d 2 R{0,1}
+ such that kdk1 = 1.

=) d = (p, 1� p) with p 2 [0, 1].

Quantum bit

Superposition | i 2 C{0,1} such that k| ik2 = 1.

=) | i = ↵|0i+ �|1i with |↵|2 + |�|2 = 1.

|0i =

0

@1

0

1

A, |1i =

0

@0

1

1

A, | i =

0

@↵
�

1

A.



Qubit evolution 4

Unitary transformation

| i 7! G| i, with G 2 C2⇥2 such that G†G = Id .

-| i G - | 0i=G| i

Unitary =) Reversible:

-G| i G† - | i

Measure: Reads and modifies.

-↵|0i+�|1i Measure ⇠⇠⇠:XXXz
|0i|↵|2

|1i|�|2

=) Superposition ! Probability distribution.



Examples 5

Superposition: | i =
1p
2
|0i+ 1p

2
|1i

Measure

-1p
2
|0i+ 1p

2
|1i Measure ⇠⇠⇠:XXXz

|0i1/2

|1i1/2

Unitary transformations

-| i G - | 0i=G| i

• NOT, |0i $ |1i: G =

0

@ 0 1

1 0

1

A.

• Hadamard: H =
1p
2

0

@ 1 1

1 �1

1

A.



Quantum coin flip 6

Probabilistic flip

-0/1 PF
⇠⇠⇠:XXXz

01/2

11/2

Remark: PF � PF = PF .

Quantum flip

-|bi H
- 1p

2
(|0i+(�1)b|1i) ⇠⇠⇠:XXXz

|0i1/2

|1i1/2

Conclusion : PF = Measure �H .

Question : H �H = ?



Quantum interference 7

!: + 1p
2
, ! : � 1p

2
.

|0i
. &

|0i |1i
. & . &

|0i |1i |0i |1i
1
2

1
2

1
2 � 1

2

H �H|bi = |bi =) H �H = Id .

Conclusion : Measures change the computation



The n-qubit 8

Definition: n-qubit $ tensor product of n qubits.

| i 2 C{0,1}n

such that k| ik2 = 1.
=) | i =

X

x2{0,1}n

↵x|xi with
X

x

|↵x|2 = 1.

Unitary transformation: | i 7! G| i, with G 2 U(2n).

-| i G - | 0i=G| i

Measure

-P
x
↵x|xi Measure -|xi

|↵x|2

Partial measure

-
↵|00i + �|01i + �|10i + �|11i Measure -↵|00i+ �|10ip

|↵|2 + |�|2
second bit = 0



Circuits 9

Quantum circuit: (G 2 U(16))

G  !

H

XOR

R⇡

4

XOR

Theorem [DiV95,BMPRV99]:

Every transformation on n-qubit decomposes into transformations

on 1-qubit and 2-qubit.

=) Universal family.



Simon’s problem
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Computing a function by oracle

Let f : {0, 1}
n

æ {0, 1}
m be a function

Classical computing
Cf : {0, 1}

n
æ {0, 1}

m

x ‘æ f (x)

Reversible computing
Rf : {0, 1}

n+m
æ {0, 1}

n+m

(x , y) ‘æ (x , y ü f (x))

Quantum computing

Uf : C{0,1}n+m

æ C{0,1}n+m

|xÍ|yÍ ‘æ |xÍ|y ü f (x)Í
|xÍ|0Í ‘æ |xÍ|f (x)Í
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Simon’s problem (Simon)
Simon
Input (given by an oracle): A function f : {0, 1}

n
æ {0, 1}

n

Promise:

÷s ”= 0n, f (x) = f (y) ≈∆ (x = y or x = y ü s)

Output: s.

Remark: f is a periodical function and we are looking for its period

Complexity: Number of evaluations of f and the computation time.

Deterministic: 2n≠1 + 1 evaluations.

Probabilistic: �(2n/2) evaluations.

Theorem[Simon’94]: The problem Simon can be solved by a
quantum algorithm with O(n) evaluations and in time O(n3).
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Hadamard (Fourier) Transform on n-qubit
Recall:

H = 1
Ô

2

A
1 1
1 ≠1

B

Definition:
Hn|xÍ = 1

2n/2
ÿ

y

(≠1)x ·y
|yÍ

where x · y =
q

i xiyi mod 2

Example: È101011|H6|110111Í = ≠1/8

Quantum circuit for Hn:

...

Hn

...
Ωæ

H

H

H

...
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Simon’s algorithm
Circuit

-

-

|0n
Í

|0n
Í

Hn

Uf

Hn Measure
Measure

-

-

?
◊

Analysis
• Initialisation : |0n

Í|0n
Í

• Hn on the 1st register: 1
2n/2

q
xœ{0,1}n |xÍ |0n

Í

• Evaluation of f : 1
2n/2

q
x |xÍ |f (x)Í

• Measure of the 2nd register: 1Ô
2 (|aÍ + |a ü sÍ) |f (a)Í

• Hn on the 1st register: 1
2n/2Ô

2
q

y

!
(≠1)a·y + (≠1)(aüs)·y "

|yÍ

= 1
2n/2Ô

2
q

y (≠1)a·y (1 + (≠1)s·y ) |yÍ

• Measure of the 1st register: uniform y such that s · y = 0

Conclusion : In O(n) iterations we obtain a system of linear
equations of rank n≠1 =∆ the 2 solutions are {0n, s}.
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Factorisation
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Classical reductions
Factorisation
Input: a composite number N
Output: a non-trivial divisor of N.
Square Root
Input: N
Output: y such that y2 = 1 mod N and y ”= ±1 mod N.
Fact 1: Factorisation Æ Square Root.
Proof: N|(y + 1)(y ≠ 1) =∆

gcd(N, y ± 1) is a non-trivial divisor of N
Order
Input: N, a œ Zú

N

Output: the period r of the function x æ ax mod N.
Fact 2: Square Root ÆR Order.
Proof: Let x œ Zú

N
random, x r = 1 mod N. Then

Pr[r is even and x r/2
”= ±1 mod N] Ø 1/2.

Example: N = 24, x = 5, r = 2. Then gcd(5 ± 1, 24) divides 24
9/29



Computing the order (with help)
The function x æ ax mod N is periodical over Z.

To compute the period, we will approximate the infinite group Z
by a "big" cyclic group Zq (taking q ¥ N2).

I will suppose that r = order(a) mod N divides q.

Without this (irrealistic) hypothesis a classical correction (via
continuous fractions) is necessary

Order (with help)
Input: N, a œ Zú

N
, q such that r = order(a) mod N divides q

Output: r

Consequence: The function
f : Zq æ ZN

x ‘æ ax mod N
is periodical.
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Quantum Fourier Transform mod q

Let Êq be a q-th primitive root of the unity

Definition: The Quantum Fourier Transform mod q is the
function

QFT q : Cq
æ Cq

|xÍ ‘æ
1Ô
q

q
yœZq

Êxy
q |yÍ

Example: È1|QFT 4|3Í = ≠i/2

Theorem: QFT q can be computed approximately by a quantum
algorithm in time O((log q)2).
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Shor’s algorithm for Order (with help)
Circuit

-

-

|0Íq

|0ÍN

QFT q

Uax

QFT q Measure
Measure

-

-

?
◊

Analysis
• Initialisation : |0Íq|0ÍN

• QFT q on 1st register: 1Ô
q

qq≠1
x=0 |xÍq |0ÍN

• Evaluation of ax : 1Ô
q

qq≠1
x=0 |xÍq |ax

ÍN

• Measure of 2nd register: 1Ô
q

r

q q

r
≠1

j=0 |jr + kÍq |ak
ÍN

• QFT q on 1st register: 1Ô
q

qq≠1
c=0

Ò
r

q

q q

r
≠1

j=0 Ê(jr+k)c
q |cÍq

=
qq≠1

c=0

3 Ô
r

q
Êkc

q

q q

r
≠1

j=0 (Êrc
q )j

4
|cÍq

=
qq≠1

c=0 –c |cÍq
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Shor’s algorithm for Order (with help)
Evaluation of the amplitudes –c =

Ô
r

q
Êkc

q

q q

r
≠1

j=0 (Êc
q

r

)j :

–c =
I

0 if q

r
doesnÕt divide c

1Ô
r

Êkc
q if q

r
|c

Evaluation of the probabilities: One measures t q

r
, for

t = 0, . . . , r ≠ 1, with probability |
1Ô
r

Êkc
q |

2 = 1
r
.

Computing r : If gcd(t, r) = 1, then

gcd(t q

r
, q) = gcd(t q

r
, r q

r
) = gcd(t, r)q

r
= q

r

Chance of measuring t q

r
with gcd(t, r) = 1:

Pr[ gcd(t, r) = 1] = „(r)
r

= Ê(log log r) = Ê(log log N)

Conclusion: One repeats this quantum process O(log log N)-times
to succeed with constant probability close to 1.
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Hidden Subgroup Problem (HSP)
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Hidden Subgroup Problem (HSP)
HSP(G ; H) where G finite group, H family of subgroups of G

Input(possibly by oracle): a function f : G æ S

Promise: f hides a subgroup H œ H:

f (x) = E (xH),

where E is injective on the left cosets of H.

Hidden Subgroup Problem (HSP) 1

The problem
Input: Finite group G and f : G � S which hides H � G:

constant and distinct on the left cosets of H.

Output: Generators for H.
G

H

a1H

...

atH

S

Theorem: If G is Abelian then there is a quantum algorithm

• which finds H with probability � 1 � 1/|G|,
• in polynomial time in log|G|.

Sortie: Generators for H H.

Complexity: Number oracle requests and time
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Quantum solutions for HSP

The success of HSP:

Theorem[Shor’94]: HSP is solvable in abelian groups in quantum
polynomial time in log(|G |).

Corollary Factorisation (HSP in Zq) and the discrete logarithm
(HSP in Zp≠1 ◊ Zp≠1) are computable in quantum polynomial
time.

Extension to R and Rm

Extension to certain non-abelian groups

Extension hidden algebraic sets of higher degree
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Characters of an abelian group
Let G be an abelian group.
Definition: A character ‰ : G æ Cú is a group homomorphism.

Remark: ‰(x) is a |G |
th root of the unity.

‚G = {characters of G}.

Theorem: G and ‚G are isomorphic. ‚G = {‰y : y œ G}.

Examples: G = Zq : ‰y (x) = Êx ·y
q .

G = G1 ◊ G2 : ‰y (x) = ‰y1(x1)‰y2(x2).

Definition: Let H Æ G . Its orthogonal subgroup is

H‹ = {y œ G : ’h œ H, ‰y (h) = 1}.

Theorem: Soit H Æ G . There exists a deterministic algorithm that
computes H from H‹ in time O(log3

|G |).
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Quantum Fourier Transform in an abelian group
Let G be an abelian group.
We consider CG , the Hilbert space generated by G .

Bases:
• Dirac: {|xÍ : x œ G}.
• Characters: {|‰y Í : y œ G},

where |‰y Í =
q

x ‰y (x)|xÍ.

Definition: QFT G : |yÍ ‘æ
1Ô
G

|‰y Í.

Principal property: Let H Æ G , x œ G . Then
TFQG |x + HÍ = |H‹(x)Í, where

|x + HÍ = 1Ô
|H|

q
hœH |x + hÍ and

|H‹(x)Í = 1
|H‹|

q
yœH‹ ‰y (x)|yÍ.

Theorem: The approximate QFT G can be computed in quantum
polynomial time.
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Standard solution for HSP in a finite abelian group G
Repeated quantum Fourier sampling of f that hides H:

Circuit : Fourier samplingf (G)
-

-

|0ÍG

|0ÍS

QFT G

Uf

QFT G Measure
Measure

-H‹

Analysis
• QFTG on 1st register:

q
xœG |xÍ |0Í

• Query f :
q

xœG |xÍ |f (x)Í

• Measure of 2nd register: |a + HÍ |f (a)Í

• QFTG on 1st register: |H‹(a)Í
• Measure of 1st register: uniform y in H‹.
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Simon and Order revisited
Simon:
G = {0, 1}

n, H = {0n, s} for 0n
”= s œ {0, 1}

n

f (x) = f (y) if and only if x = y where x ü y = s
Characters:
‰y : {0, 1}

n
æ C for y œ {0, 1}

n

x ‘æ (≠1)x ·y

where x · y =
q

n

i=1 xiyi mod 2
H‹ = {y : s · y = 0}

Order (with help):
G = Zq, H = {0, r , 2r , . . .}
The hiding function for H:
f : Zq æ ZN

x ‘æ ax mod N
Characters:
‰c : Zq æ C for k œ Zq

x æ Êcx
q

‰c(r) = 1 if and only if q/r divides c , H‹ = {c : q/r divides c}
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Quantum safe cryptography
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Cryptosystems in danger

Theorem[Shor’94]: The HSP is solvable in finite abelian groups in
quantum polynomial time.

Corollary: Factorisation, discrete logarithm, discrete logarithm in
elliptic curves are solvable in quantum polynomial time.

A quantum computer would break the following systems:
• RSA
• Di�e-Hellman key exchange (DH)
• El Gamal encryption
• Digital Signature Algorithm (DSA)
• ECDH, ECDSA, ECIES
• pairing based cryptography
• etc.
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RSA and factorization
Number theoretical fact: Let n = pq where p and q are primes.
Euler’s totient function: „(n) = (p ≠ 1)(q ≠ 1). Then for every m,

m„(n) = n mod n

Key generation:
Public key: n = pq and e such that gcd(e, „(n)) = 1
Private key: d such that ed = 1 mod „(n).

Encryption: Let the message be 0 < m < n

c = me mod n

Decryption:
cd = med = m mod n

Factorizing n ≈∆ Computing „(n) =∆ Breaking RSA
But this is not necessary, maybe there are other methods!
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NSA recommendations for a quantum safe cryptography
The "guidance" of National Security Agency (NSA) in August
2015:

“Our ultimate goal is to provide cost e�ective security against a
potential quantum computer.

We are working with partners across the USG, vendors, and
standards bodies to ensure there is a clear plan for getting a new
Suite of algorithms that are developed in an open and transparent
manner that will form the foundation of our next Suite of
cryptographic algorithms.

Until this new suite is developed and products are available
implementing the quantum resistant suite, we will rely on current
algorithms. For those partners and vendors that have not yet made
the transition to Suite B algorithms, we recommend not making a
significant expenditure to do so at this point but instead to prepare
for the upcoming quantum resistant algorithm transition".
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NIST quantum safe project
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
15 Décembre 2016: “The National Institute of Standards and
Technology (NIST) is now accepting submissions for quantum-
resistant public-key cryptographic algorithms. The deadline for
submission is November 30, 2017.

In recent years, there has been a substantial amount of research on
quantum computers. If large-scale quantum computers are ever
built, they will be able to break many of the public-key
cryptosystems currently in use.

The question of when a large-scale quantum computer will be built
is a complicated one. While in the past it was less clear that large
quantum computers are a physical possibility, many scientists now
believe it to be merely a significant engineering challenge.

It has taken almost two decades to deploy our modern public key
cryptography infrastructure. We must begin now to prepare our
information security systems to resist quantum computing". 25/29



Methods for quantum safe cryptography

• Error correcting code based (McElice 1978)
• Hash based (Merkle 1979)
• Lattice based (Ajtai 1996)
• Multivariate polynomial based (Patarin 1996)
• Supersingular elliptic curve isogeny based (Rostovtsev and

Stolbunov 2006)
• Symmetric key based (AES)
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Candidate proposals for NIST
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The story of the SOLILOQUY cryptosystem
SOLILOQUY: A cautionary tale[Campbell, Groves, Shepherd ’14]
A publication of the Communications-Electronics Security Group in
the Government Communications Headquarters

Developed in 2007, abandoned in 2014 due to quantum attacks

“We would like to state clearly that, following our work on the
quantum algorithm, we have stopped the development of
SOLILOQUY as a potential quantum-resistant primitive and we do
not recommend its use for real-world deployement.

As of late 2014, when novel types of quantum-resistant
cryptography are being developed for real world deployment, we
caution that much care and patience will be required to ensure
that each design receives a thorough security assessment.

It would seem that quantum algorithms for resolving Abelian
Hidden Subgroup Problems have broader applicability to
cryptography than ‘traditionally’ documented".
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Plan of the talk was

1 Crash course on quantum computing
2 Simon’s problem
3 Factorisation
4 The Hidden Subgroup Problem (HSP)
5 Quantum safe cryptography

Thank you!
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