Code-Based Cryptography for FPGAs

Dr. Ruben Niederhagen, February 8, 2018

public-key cryptography

public-key cryptography classic post-quantum

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 1 (25)

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 1 (25)

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 1 (25)

- Code-based schemes are well-understood:
 - Long history of research.

- Code-based schemes are well-understood:
 - Long history of research.
 - Security parameters widely accepted.

- Code-based schemes are well-understood:
 - Long history of research.
 - Security parameters widely accepted.
- Code-based schemes are expensive:
 - High-throughput scenario: web server...

- Code-based schemes are well-understood:
 - Long history of research.
 - Security parameters widely accepted.
- Code-based schemes are expensive:
 - High-throughput scenario: web server...
 - Low-energy scenario: embedded devices, SmartCards, ...

- Code-based schemes are well-understood:
 - Long history of research.
 - Security parameters widely accepted.
- Code-based schemes are expensive:
 - High-throughput scenario: web server...
 - Low-energy scenario: embedded devices, SmartCards, ...
- \implies Hardware implementation as accelerator and for efficiency.

01101100


```
Introduction
Error-Correcting Codes — McEliece and Niederreiter
```


Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 3 (25)

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 3 (25)

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

1 Choose random sequence $(\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree *t*.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree t.
- ${\bf s}\,$ Compute the $t\times n$ parity check matrix

$$H = \begin{bmatrix} 1/g(\alpha_0) & 1/g(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ \alpha_0/g(\alpha_0) & \alpha_1/g(\alpha_1) & \cdots & \alpha_{n-1}/g(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{t-1}/g(\alpha_0) & \alpha_1^{t-1}/g(\alpha_1) & \cdots & \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}.$$

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree t.
- ${\bf s}\,$ Compute the $t\times n$ parity check matrix

$$H = \begin{bmatrix} 1/g(\alpha_0) & 1/g(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ \alpha_0/g(\alpha_0) & \alpha_1/g(\alpha_1) & \cdots & \alpha_{n-1}/g(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{t-1}/g(\alpha_0) & \alpha_1^{t-1}/g(\alpha_1) & \cdots & \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}$$

4 Transform H to a $mt \times n$ binary parity check matrix H'.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree t.
- ${\bf s}\,$ Compute the $t\times n$ parity check matrix

$$H = \begin{bmatrix} 1/g(\alpha_0) & 1/g(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ \alpha_0/g(\alpha_0) & \alpha_1/g(\alpha_1) & \cdots & \alpha_{n-1}/g(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{t-1}/g(\alpha_0) & \alpha_1^{t-1}/g(\alpha_1) & \cdots & \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}.$$

- 4 Transform H to a $mt \times n$ binary parity check matrix H'.
- **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.

Output: Private key $(q(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- 2 Choose a random irreducible polynomial g(x) of degree t. 3 Compute the $t \times n$ parity check matrix

Permute list of all
$$2^m$$
 elements, pick the first n elements.

$$\begin{bmatrix} 1/q(\alpha_0) & 1/q(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ n-1/g(\alpha_{n-1}) & \vdots \\ \vdots \\ \alpha_0^{t-1}/g(\alpha_0) & \alpha_1^{t-1}/g(\alpha_1) & \cdots & \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}$$

- **4** Transform H to a $mt \times n$ binary parity check matrix H'.
- **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Permute list of all 2^m elements, pick the first n elements.

- **Option 1:** Use Fisher-Yates shuffle.
 - Biased if not well implemented,
 - non-biased implementations need floating-point arithmetic or are not constant time.

Permute list of all 2^m elements, pick the first n elements.

- Option 1: Use Fisher-Yates shuffle.
 - Biased if not well implemented,
 - non-biased implementations need floating-point arithmetic or are not constant time.
- **Option 2:** Use a constant-time sorting algorithm.

Sample 2^m random 32-bit values r_i .

Generate a list of tuples $\{(r_0, 0), (r_i, 1), \dots, (r_{2^m-1}, a^{m-1} + a^{m-2} \dots + a + 1)\}$. Sort list by the first element.

Obtain the permutation by reading the second elements.

Expensive: more cycles, more logic.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.

Output: Private key $(q(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- 2 Choose a random irreducible polynomial g(x) of degree t. 3 Compute the $t \times n$ parity check matrix

Permute list of all
$$2^m$$
 elements, pick the first n elements.

$$\begin{bmatrix} 1/q(\alpha_0) & 1/q(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ n-1/g(\alpha_{n-1}) & \vdots \\ \vdots \\ \alpha_0^{t-1}/g(\alpha_0) & \alpha_1^{t-1}/g(\alpha_1) & \cdots & \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}$$

- **4** Transform H to a $mt \times n$ binary parity check matrix H'.
- **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree t.
- **3** Compute the $t \times n$ parity check matrix

- ${\bf 4}\,$ Transform H to a $mt \times n$ binary parity check matrix H'.
- **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Generate an irreducible polynomial of degree t.

- **Option 1:** Randomly chose *t* + 1 coefficients, check if obtained polynomial is irreducible.
 - Needs about t iterations
 - \Rightarrow not constant time,
 - checking for irreducibility is expensive (extended Euclidean algorithm).

Generate an irreducible polynomial of degree t.

- **Option 1:** Randomly chose *t* + 1 coefficients, check if obtained polynomial is irreducible.
 - Needs about t iterations
 - \Rightarrow not constant time,
 - checking for irreducibility is expensive (extended Euclidean algorithm).
- Option 2: Construct an irreducible polynomial.
 - Idea: Compute minimal polynomial of an element $r \in \mathbb{F}(2^m)[x]/f$ with $\deg(f) = t$.
 - Compute several powers in $\mathbb{F}(2^m)[x]/f$,
 - solve a linear equation system over $\mathbb{F}(2^m)$ of dimension $t \times t + 1$.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree t.
- **3** Compute the $t \times n$ parity check matrix

- ${\bf 4}\,$ Transform H to a $mt \times n$ binary parity check matrix H'.
- **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree t.
- ${\bf s}\,$ Compute the $t\times n$ parity check matrix

$$H = \begin{bmatrix} 1/g(\alpha_0) & 1/g(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ \alpha_0/g(\alpha_0) & \alpha_1/g(\alpha_1) & \cdots & \alpha_{n-1}/g(\alpha_{n-1}) \\ \vdots & \vdots \\ \vdots & \vdots \\ \text{Evaluate } g \text{ at all } 2^m \text{ elements using additive FFT.} \qquad \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}$$

- 4 Transform H to a $mt \times n$ binary parity check matrix $H^{\prime}.$
- **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.

Output: Private key $(q(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial q(x) of degree t.
- **3** Compute the $t \times n$ parity check matrix

$$\begin{bmatrix} 1/q(\alpha_0) & 1/g(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ g(\alpha_1) & \cdots & \alpha_{n-1}/g(\alpha_{n-1}) \\ \vdots & \ddots & \vdots \\ \alpha_0^{t-1}/g(\alpha_0) & \alpha_1^{t-1}/g(\alpha_1) & \cdots & \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}$$

- **4** Transform H to a $mt \times n$ binary parity check matrix H'. **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Algorithm 2: Encryption algorithm for the Niederreiter cryptosystem.

Input : Plaintext e, public key K.

Output: Ciphertext *c*.

1 Compute $c = [\mathbb{I}_{mt}|K] \times e$.

Algorithm 2: Encryption algorithm for the Niederreiter cryptosystem.

Input : Plaintext e, public key K.

Output: Ciphertext *c*.

- 1 Compute $c = [\mathbb{I}_{mt}|K] \times e$.
- **2** Return the ciphertext c.

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext e.

1 Compute the double-size $2t \times n$ parity check matrix

$$H^{(2)} = \begin{bmatrix} 1/g^{2}(\alpha_{0}) & 1/g^{2}(\alpha_{1}) & \cdots & 1/g^{2}(\alpha_{n-1}) \\ \alpha_{0}/g^{2}(\alpha_{0}) & \alpha_{1}/g^{2}(\alpha_{1}) & \cdots & \alpha_{n-1}/g^{2}(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{0}^{2t-1}/g^{2}(\alpha_{0}) & \alpha_{1}^{2t-1}/g^{2}(\alpha_{1}) & \cdots & \alpha_{n-1}^{2t-1}/g^{2}(\alpha_{n-1}) \end{bmatrix}$$

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 10 (25)

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext e.

1 Compute the double-size $2t \times n$ parity check matrix

$$H^{(2)} = \begin{bmatrix} 1/g^2(\alpha_0) & 1/g^2(\alpha_1) & \cdots & 1/g^2(\alpha_{n-1}) \\ \alpha_0/g^2(\alpha_0) & \alpha_1/g^2(\alpha_1) & \cdots & \alpha_{n-1}/g^2(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{2t-1}/g^2(\alpha_0) & \alpha_1^{2t-1}/g^2(\alpha_1) & \cdots & \alpha_{n-1}^{2t-1}/g^2(\alpha_{n-1}) \end{bmatrix}$$

2 Transform $H^{(2)}$ to a $2mt \times n$ binary parity check matrix $H'^{(2)}$.

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 10 (25)

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext e.

1 Compute the double-size $2t \times n$ parity check matrix

$$H^{(2)} = \begin{bmatrix} 1/g^2(\alpha_0) & 1/g^2(\alpha_1) & \cdots & 1/g^2(\alpha_{n-1}) \\ \alpha_0/g^2(\alpha_0) & \alpha_1/g^2(\alpha_1) & \cdots & \alpha_{n-1}/g^2(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{2t-1}/g^2(\alpha_0) & \alpha_1^{2t-1}/g^2(\alpha_1) & \cdots & \alpha_{n-1}^{2t-1}/g^2(\alpha_{n-1}) \end{bmatrix}$$

- **2** Transform $H^{(2)}$ to a $2mt \times n$ binary parity check matrix $H'^{(2)}$.
- **3** Compute the double-size syndrome: $S^{(2)} = H'^{(2)} \times (c|0)$.

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 10 (25)

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext e.

$$H^{(2)} = \begin{bmatrix} 1/g^2(\alpha_0) & 1/g^2(\alpha_1) & \cdots & 1/g^2(\alpha_{n-1}) \\ \alpha_0/g^2(\alpha_0) & \alpha_1/g^2(\alpha_1) & \cdots & \alpha_{n-1}/g^2(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{2t-1}/g^2(\alpha_0) & \alpha_1^{2t-1}/g^2(\alpha_1) & \cdots & \alpha_{n-1}^{2t-1}/g^2(\alpha_{n-1}) \end{bmatrix}$$

- **2** Transform $H^{(2)}$ to a 2mt imes n binary parity check matrix $H'^{(2)}$.
- ${\bf 3}$ Compute the double-size syndrome: $S^{(2)}=H^{\prime(2)}\times (c|0).$
- 4 Compute the error-locator polynomial $\sigma(x)$ from $S^{(2)}$.

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext e.

$$H^{(2)} = \begin{bmatrix} 1/g^2(\alpha_0) & 1/g^2(\alpha_1) & \cdots & 1/g^2(\alpha_{n-1}) \\ \alpha_0/g^2(\alpha_0) & \alpha_1/g^2(\alpha_1) & \cdots & \alpha_{n-1}/g^2(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{2t-1}/g^2(\alpha_0) & \alpha_1^{2t-1}/g^2(\alpha_1) & \cdots & \alpha_{n-1}^{2t-1}/g^2(\alpha_{n-1}) \end{bmatrix}$$

- **2** Transform $H^{(2)}$ to a 2mt imes n binary parity check matrix $H'^{(2)}$.
- ${\bf 3}$ Compute the double-size syndrome: $S^{(2)}=H^{\prime(2)}\times (c|0).$
- **4** Compute the error-locator polynomial $\sigma(x)$ from $S^{(2)}$.
- **s** Evaluate the error-locator polynomial $\sigma(x)$ at $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$.

Ev

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext *c*, secret key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext *e*.

$$H^{(2)} = \begin{bmatrix} 1/g^2(\alpha_0) & 1/g^2(\alpha_1) & \cdots & 1/g^2(\alpha_{n-1}) \\ \alpha_0/g^2(\alpha_0) & \alpha_1/g^2(\alpha_1) & \cdots & \alpha_{n-1}/g^2(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ Evaluate g and \sigma at all 2^m elements using additive FFT. \\ 2 \text{ Transform } H^{(2)} \text{ to a } 2mt \times n \text{ binary parity check matrix } H^{(2)}. \\ 3 \text{ Compute the double-size syndrome: } S^{(2)} = H'^{(2)} \times (c|0). \\ 4 \text{ Compute the error-locator polynomial } \sigma(x) \text{ from } S^{(2)}. \\ 5 \text{ Evaluate the error-locator polynomial } \sigma(x) \text{ at } (\alpha_0, \alpha_1, \dots, \alpha_{n-1}). \\ \end{bmatrix}$$

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key $(q(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext *e*.

$$\begin{bmatrix} 1/g^2(\alpha_0) & 1/g^2(\alpha_1) & \cdots & 1/g^2(\alpha_{n-1}) \\ \alpha_0/g^2(\alpha_0) & \alpha_1/g^2(\alpha_1) & \cdots & \alpha_{n-1}/g^2(\alpha_{n-1}) \\ \end{bmatrix}$$
Efficient decoding algorithm.

$$\begin{bmatrix} \ddots & \vdots \\ g^2(\alpha_1) & \cdots & \alpha_{n-1}^{2t-1}/g^2(\alpha_{n-1}) \end{bmatrix}$$

- 2 Transform $H^{(2)}$ to a $2mt \times n$ binary parity check matrix $H'^{(2)}$. 3 Compute the double-size syndrome: $S^{(2)} = H'^{(2)} \times (c|0)$. 4 Compute the error-locator polynomial $\sigma(x)$ from $S^{(2)}$.

- **5** Evaluate the error-locator polynomial $\sigma(x)$ at $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$.

Efficient decoding algorithm:

- **Option 1:** Patterson algorithm.
 - Not constant time,
 - side-channel attacks can be used to decode messages.

Efficient decoding algorithm:

- **Option 1:** Patterson algorithm.
 - Not constant time,
 - side-channel attacks can be used to decode messages.
- **Option 2:** Berlekamp-Massey algorithm.
 - Constant time.

Required Modules:

• Finite field arithmetic in $\mathbb{F}(2^m)$.

- Finite field arithmetic in $\mathbb{F}(2^m)$.
- Polynomial arithmetic in $\mathbb{F}(2^m)[x]/f$.

- Finite field arithmetic in $\mathbb{F}(2^m)$.
- Polynomial arithmetic in $\mathbb{F}(2^m)[x]/f$.
- Merge-sort for generating a permutation.

- Finite field arithmetic in $\mathbb{F}(2^m)$.
- Polynomial arithmetic in $\mathbb{F}(2^m)[x]/f$.
- Merge-sort for generating a permutation.
- Additive FFT for polynomial evaluation.

- Finite field arithmetic in $\mathbb{F}(2^m)$.
- Polynomial arithmetic in $\mathbb{F}(2^m)[x]/f$.
- Merge-sort for generating a permutation.
- Additive FFT for polynomial evaluation.
- Gaussian elimination.

- Finite field arithmetic in $\mathbb{F}(2^m)$.
- Polynomial arithmetic in $\mathbb{F}(2^m)[x]/f$.
- Merge-sort for generating a permutation.
- Additive FFT for polynomial evaluation.
- Gaussian elimination.
- Berlekamp Massey.

Design Key Generation

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 13 (25)

Design Key Generation

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 13 (25)

Design Key Generation

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 13 (25)

Design

Algorithm 1: Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: *m*, *t*, and *n*.

Output: Private key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$ and public key K.

- 1 Choose random sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}(2^m)^n$ of distinct elements.
- **2** Choose a random irreducible polynomial g(x) of degree t.
- ${\bf s}\,$ Compute the $t\times n$ parity check matrix

$$H = \begin{bmatrix} 1/g(\alpha_0) & 1/g(\alpha_1) & \cdots & 1/g(\alpha_{n-1}) \\ \alpha_0/g(\alpha_0) & \alpha_1/g(\alpha_1) & \cdots & \alpha_{n-1}/g(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{t-1}/g(\alpha_0) & \alpha_1^{t-1}/g(\alpha_1) & \cdots & \alpha_{n-1}^{t-1}/g(\alpha_{n-1}) \end{bmatrix}.$$

- 4 Transform H to a $mt \times n$ binary parity check matrix H'.
- **5** Transform H' into its systematic form $[\mathbb{I}_{mt}|K]$.

Design Encryption

Algorithm 4: Encryption algorithm for the Niederreiter cryptosystem.

Input : Plaintext e, public key K.

Output: Ciphertext *c*.

1 Compute
$$c = [\mathbb{I}_{mt}|K] \times e$$
.

2 Return the ciphertext c.

Design Decryption

Design

Algorithm 3: Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext c, secret key $(g(x), (\alpha_0, \alpha_1, \dots, \alpha_{n-1}))$. **Output:** Plaintext e.

$$H^{(2)} = \begin{bmatrix} 1/g^2(\alpha_0) & 1/g^2(\alpha_1) & \cdots & 1/g^2(\alpha_{n-1}) \\ \alpha_0/g^2(\alpha_0) & \alpha_1/g^2(\alpha_1) & \cdots & \alpha_{n-1}/g^2(\alpha_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{2t-1}/g^2(\alpha_0) & \alpha_1^{2t-1}/g^2(\alpha_1) & \cdots & \alpha_{n-1}^{2t-1}/g^2(\alpha_{n-1}) \end{bmatrix}$$

- **2** Transform $H^{(2)}$ to a 2mt imes n binary parity check matrix $H'^{(2)}$.
- ${\bf 3}$ Compute the double-size syndrome: $S^{(2)}=H^{\prime(2)}\times (c|0).$
- 4 Compute the error-locator polynomial $\sigma(x)$ from $S^{(2)}$.
- **s** Evaluate the error-locator polynomial $\sigma(x)$ at $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$.

Design Decryption

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 19 (25)

Code generation and module parameters:

• All system parameters (m, t, n) can be freely chosen.

Code generation and module parameters:

- All system parameters (m, t, n) can be freely chosen.
- Performance parameters for controlling parallelism:

Code generation and module parameters:

- All system parameters (m, t, n) can be freely chosen.
- Performance parameters for controlling parallelism:
 - Compact, low-area design for SmartCards, embedded systems, ...

Code generation and module parameters:

- All system parameters (m, t, n) can be freely chosen.
- Performance parameters for controlling parallelism:
 - Compact, low-area design for SmartCards, embedded systems, ...
 - Large, high-performance design for server accelerator, ...

Code generation and module parameters:

- All system parameters (m, t, n) can be freely chosen.
- Performance parameters for controlling parallelism:
 - Compact, low-area design for SmartCards, embedded systems, ...
 - Large, high-performance design for server accelerator, ...

Recommended system parameters (for 266-bit security):

- finite field 2^m : m = 13
- number of errors: t = 119
- code length: n = 6960

Code-Based Cryptography for FPGAs | Dr. Ruben Niederhagen | February 8, 2018 | 20 (25)

Performance

	Cycle	S				
Case	Key-Gen Dec. Lo		Logic	Mem.	Reg.	Fmax
area	$11,\!121,\!214$	$34,\!492$	$53,\!447(\!23\%)$	907 (35%)	$118,\!243$	$245 \; \mathrm{MHz}$
bal.	$3,\!062,\!936$	22,768	$70,\!478(30\%)$	915(36%)	$146,\!648$	$251 \; \mathrm{MHz}$
time	966,400	$17,\!055$	$121,\!806(52\%)$	961(38%)	$223,\!232$	$248 \; \mathrm{MHz}$

Table: Performance for the entire Niederreiter cryptosystem (i.e., key generation, encryption, and decryption) including the serial IO interface when synthesized for the Stratix V (5SGXEA7N) FPGA.

Performance Comparison

		Cycles			Freq.	Mem.	Time (ms)				
	Gen.	Dec.	Enc.		(MHz)		Gen.	Dec.	Enc.		
m = 11, t = 50, n = 2048, Virtex 5 LX110											
Shoufan et a	l. 14,670,000	$210,\!300$	81,500	$14{,}537{}(84{}\%)$	163	75	90.00	1.29	0.50		
This design	$1,\!503,\!927$	5,864	$1,\!498$	$6,\!660(38\%)$	180	68	8.35	0.03	0.01		
m=13,t=128,n=8192, Haswell vs. Stratix V											
Chou	$1,\!236,\!054,\!840$	$343,\!344$	$289,\!152$	—	4,000		309.01	0.09	0.07		
This design	$1,\!173,\!750$	$17,\!140$	6,528	$129,\!059(54\%)$	231	$1,\!126$	5.08	0.07	0.07		

Table: Comparison with related work. Logic is given in "Slices" for Xilinx Virtex FPGAs and in "ALMs" for Altera Stratix FPGAs.

Thank you for your attention!

Image Credits

Title page:

CC0 Creative Commons https://pixabay.com/en/boy-device-headphones-63777/

Contact Information

Dr. Ruben Niederhagen

Cyber-Physical System Security

Fraunhofer-Institute for Secure Information Technology

Address: Rheinstraße 75 64295 Darmstadt Germany Internet: http://www.sit.fraunhofer.de

 Phone:
 +49 6151 869-135

 Fax:
 +49 6151 869-224

 E-Mail:
 ruben.niederhagen@sit.fraunhofer.de

