Post-Quantum Cryptography

Dr. Ruben Niederhagen, February 8, 2016

Using quantum states for computation:

Introduced in 1985 by David Deutsch [3].

- Operate on *qubits*
- using gates
- that perform reversible operations
- exploiting entanglement and superposition.

Using quantum states for computation:

Introduced in 1985 by David Deutsch [3].

- Operate on *qubits*
- using gates
- that perform reversible operations
- exploiting entanglement and superposition.

Theoretical (since \approx 1900):

- qubit: \mathbb{C}^2
- gate: unitary matrix over $\mathbb C$

Physical (since \approx 1990s):

- qubit: photon, electron, atom, quantum dots...
- gate: phase shifter, EM field, laser, ...

Using quantum states for computation:

Introduced in 1985 by David Deutsch [3].

- Operate on *qubits*
- using gates
- that perform reversible operations
- exploiting entanglement and superposition.

Theoretical (since \approx 1900):

- qubit: \mathbb{C}^2
- gate: unitary matrix over $\mathbb C$

Physical (since \approx 1990s):

- qubit: photon, electron, atom, quantum dots...
- gate: phase shifter, EM field, laser, ...

Using quantum states for computation:

Introduced in 1985 by David Deutsch [3].

- Operate on *qubits*
- using gates
- that perform reversible operations
- exploiting entanglement and superposition.

Theoretical (since \approx 1900):

- qubit: \mathbb{C}^2
- gate: unitary matrix over $\mathbb C$

Physical (since \approx 1990s):

- qubit: photon, electron, atom, quantum dots...
- gate: phase shifter, EM field, laser, ...

Quantum algorithms:

- Simon's algorithm, Deutsch–Jozsa algorithm, ...
- Grover's algorithm: search in \sqrt{n} time.
- Shor's algorithm: discrete logarithm and integer factorization in polynomial time (solve the abelian hidden subgroup problem).

Quantum algorithms:

- Simon's algorithm, Deutsch–Jozsa algorithm, ...
- Grover's algorithm: search in \sqrt{n} time.
- Shor's algorithm: discrete logarithm and integer factorization in polynomial time (solve the abelian hidden subgroup problem).

Effect on current cryptography:

- Grover reduces a brute force attack on AES-128 from time $c \cdot 2^{128}$ to time $c' \cdot 2^{64}$; similar for hash-functions.
 - \Rightarrow Use 256-bit primitives!

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 2 (38)

Quantum algorithms:

- Simon's algorithm, Deutsch–Jozsa algorithm, ...
- Grover's algorithm: search in \sqrt{n} time.
- Shor's algorithm: discrete logarithm and integer factorization in polynomial time (solve the abelian hidden subgroup problem).

Effect on current cryptography:

- Grover reduces a brute force attack on AES-128 from time $c \cdot 2^{128}$ to time $c' \cdot 2^{64}$; similar for hash-functions.
 - \Rightarrow Use 256-bit primitives!
- Shor breaks all RSA, ECC, DHE, ECDHE, DSA, ECDSA, ..!

The Internet is broken, secure communication is broken; what now?

The Internet is broken, secure communication is broken; what now?

The physicist says:

Use quantum technologies to fight quantum technology!

The Internet is broken, secure communication is broken; what now?

The physicist says:

Use quantum technologies to fight quantum technology!

The cryptographer says:

Just base your crypto on math that quantum computers can't break.

"Quantum Cryptography" is

mainly limited to quantum key distribution,

- mainly limited to quantum key distribution,
- provides no authentication (apart from PUF technologies),

- mainly limited to quantum key distribution,
- provides no authentication (apart from PUF technologies),
- requires direct fiber-optical connection or line of sight,

- mainly limited to quantum key distribution,
- provides no authentication (apart from PUF technologies),
- requires direct fiber-optical connection or line of sight,
- has a problem with large distances,

- mainly limited to quantum key distribution,
- provides no authentication (apart from PUF technologies),
- requires direct fiber-optical connection or line of sight,
- has a problem with large distances,
- needs new infrastructure and new technology,

- mainly limited to quantum key distribution,
- provides no authentication (apart from PUF technologies),
- requires direct fiber-optical connection or line of sight,
- has a problem with large distances,
- needs new infrastructure and new technology,
- does not work for mobile phones, sensor networks, cars, ...

- mainly limited to quantum key distribution,
- provides no authentication (apart from PUF technologies),
- requires direct fiber-optical connection or line of sight,
- has a problem with large distances,
- needs new infrastructure and new technology,
- does not work for mobile phones, sensor networks, cars, ...
- does not scale well, and

- mainly limited to quantum key distribution,
- provides no authentication (apart from PUF technologies),
- requires direct fiber-optical connection or line of sight,
- has a problem with large distances,
- needs new infrastructure and new technology,
- does not work for mobile phones, sensor networks, cars, ...
- does not scale well, and
- is not really necessary if one does not insist in *physical principles* but is fine with **math and computational complexity**.

Main task of post-quantum cryptography [2]:

Find mathematically hard problems that

cannot be broken by classical computers,

Main task of post-quantum cryptography [2]:

Find mathematically hard problems that

- cannot be broken by classical computers,
- cannot be broken by quantum computers,

Main task of post-quantum cryptography [2]:

Find mathematically hard problems that

- cannot be broken by classical computers,
- cannot be broken by quantum computers,
- provide a trapdoor for asymmetric crypto, and

Main task of post-quantum cryptography [2]:

Find mathematically hard problems that

- cannot be broken by classical computers,
- cannot be broken by quantum computers,
- provide a trapdoor for asymmetric crypto, and
- can be used efficiently in terms of
 - time,
 - memory, and
 - communication.

Current approaches are:

- code-based cryptography,
- multivariate cryptography,
- hash-based cryptography,
- lattice-based cryptography, and
- supersingular elliptic curve isogenies.

Code-based Cryptography

Error correction on a noisy channel:

01101100

Error correction on a noisy channel:

 $\begin{array}{c} \text{01101100} \xrightarrow[]{\text{encode}} 10011001001 \end{array}$

Error correction on a noisy channel:

01101100 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{encode}}$ 10010 001011 $\xrightarrow{\text{transmitt}}$

Error correction on a noisy channel:

01101100 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{encode}}$ 10011 001001 $\xrightarrow{\text{transmitt}}$

Error correction on a noisy channel:

01101100 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{decode}}$ 01101100 $\xrightarrow{\text{decode}}$ 01101100

Error correction on a noisy channel:

01101100 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{decode}}$ 01101100 $\xrightarrow{\text{decode}}$ 01101100

Error correction on a noisy channel:

Add redundant information to the message that allows to detect and correct bit-errors. Practical application requires *efficient* encoding and decoding algorithms.

01101100 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{encode}}$ 10011001001 $\xrightarrow{\text{decode}}$ 01101100 $\xrightarrow{\text{decode}}$ 01101100

Error correction on a noisy channel:

Add redundant information to the message that allows to detect and correct bit-errors.

Practical application requires *efficient* encoding and decoding algorithms.

Encoding: Multiply message vector with generator matrix.

Decoding: Use *decoding algorithm* of the code.

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 7 (38)

Code-based Cryptography McEliece Crypto System

System Parameters: $n, t \in \mathbb{N}$, where $t \ll n$.

Key Generation:

- $\mathsf{G}: \ k imes n$ generator matrix of a code \mathcal{G} ,
- S: $k \times k$ random non-singular matrix,
- P: $n \times n$ random permutation matrix.

Compute $k \times n$ matrix $G^{pub} = SGP$.

- Public Key: (G^{pub}, t)
- Private Key: $(S, D_{\mathcal{G}}, P)$

where $D_{\mathcal{G}}$ is an efficient decoding algorithm for \mathcal{G} .

Code-based Cryptography McEliece Crypto System

- Public Key: (G^{pub}, t)
- Private Key: (S, D_G, P) .

(recall: $G^{pub} = SGP$)

Code-based Cryptography McEliece Crypto System

• Public Key: (G^{pub}, t)

(recall:
$$G^{pub} = SGP$$
)

- Private Key: (S, D_G, P) .
- Encryption: to encrypt message $\mathsf{m} \in \mathbb{F}_2^k$,

randomly choose $\mathbf{e} \in \mathbb{F}_2^n$ of weight t; compute

$$c = mG^{pub} \oplus e.$$

Code-based Cryptography McEliece Crypto System

• Public Key: (G^{pub}, t)

Private Key:
$$(S, D_{\mathcal{G}}, P)$$
.

• Encryption: to encrypt message $m \in \mathbb{F}_2^k$, randomly choose $e \in \mathbb{F}_2^n$ of weight t; compute

$$c = mG^{pub} \oplus e.$$

(recall: $G^{pub} = SGP$)

Decryption: compute

$$\mathsf{c}' = \mathsf{c}\mathsf{P}^{-1} = \mathsf{m}\mathsf{S}\mathsf{G} \oplus \mathsf{e}\mathsf{P}^{-1},$$

use
$$D_{\mathcal{G}}$$
 to decode c' to m' = mS, compute

$$m = m'S^{-1} = mSS^{-1}$$
.

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 9 (38)

Code-based Cryptography McEliece Crypto System

McEliece problem:

Given a McEliece public key $(G^{\text{pub}}, t), G^{\text{pub}} \in \{0, 1\}^{k \times n}$ and a cipher text $c \in \{0, 1\}^n$, find a message $m \in \{0, 1\}^k$ with $w_{\text{H}}(\text{m}G^{\text{pub}} - c) = t$.

Code-based Cryptography McEliece Crypto System

McEliece problem:

Given a McEliece public key $(G^{pub}, t), G^{pub} \in \{0, 1\}^{k \times n}$ and a cipher text $c \in \{0, 1\}^n$, find a message $m \in \{0, 1\}^k$ with $w_{\mathsf{H}}(\mathsf{m}G^{\mathsf{pub}} - \mathsf{c}) = t$.

The hardness of this problem depends on the specific code. McEliece proposes to use binary Goppa codes.

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 10 (38)

- System Parameters: $n, t \in \mathbb{N}$, where $t \ll n$.
- Key Generation:

H: $(n-k) \times n$ parity check matrix of a code \mathcal{G} ,

P: $n \times n$ random permutation matrix.

Compute

 $\begin{array}{lll} {\sf S}:&(n-k)\times(n-k) \text{ non-singular matrix, and}\\ {\sf H}^{{\sf pub}}:&(n-k)\times n \text{ matrix}\\ {\sf such that } {\sf SHP}=\big({\sf Id}_{n-k}\mid {\sf H}^{{\sf pub}}\big). \end{array}$

- Public Key: (H^{pub}, t)
- Private Key: (S, D_G, P) where D_G is an efficient syndrome decoding algorithm for G.

- Public Key: (H^{pub}, t)
- Private Key: (S, D_G, P) .

(recall:
$$\left(\mathsf{Id}_{n-k} \mid \mathsf{H}^{\mathsf{pub}}\right) = \mathsf{SHP}$$
)

• Public Key: (H^{pub}, t)

(recall:
$$(Id_{n-k} | H^{pub}) = SHP)$$

- Private Key: (S, D_G, P) .
- Encryption: to encrypt message $\mathbf{e} \in \mathbb{F}_2^n$ of weight t,

compute the syndrome

$$s = (Id_{n-k} | H^{pub}) e^{T}.$$

• Public Key: (H^{pub}, t)

(recall:
$$(Id_{n-k} | H^{pub}) = SHP)$$

- Private Key: (S, D_G, P) .
- Encryption: to encrypt message $e \in \mathbb{F}_2^n$ of weight t, compute the syndrome

$$s = (Id_{n-k} \mid H^{pub}) e^{T}.$$

Decryption: compute

$$s' = S^{-1}s = HPe^{T}$$

use
$$D_{\mathcal{G}}$$
 to recover $e' = Pe^{T}$, compute

$$\mathbf{e}^{\mathsf{T}} = \mathbf{P}^{-1}\mathbf{e}' = \mathbf{P}^{-1}\mathbf{P}\mathbf{e}^{\mathsf{T}}.$$

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 12 (38)

Code-based Cryptography McEliece and Niederreiter

Recommended parameters:

$$n = 6960$$

 $m = 13$
 $t = 119$
 $k = n - mt = 5413$

Estimated security level: 266 bit.

Public key size: (n-k)k bits $\approx 1,046,739$ bytes.

Code-based Cryptography McEliece and Niederreiter

Recommended parameters:

n = 6960 m = 13 t = 119k = n - mt = 5413

Estimated security level: 266 bit.

Public key size: (n-k)k bits $\approx 1,046,739$ bytes.

Disadvantages of McEliece and Niederreiter:

Large key size when using binary Goppa codes.

Further improvements for code-based schemes:

Use codes with a more compact representation, e.g. cyclic codes.

Further improvements for code-based schemes:

Use codes with a more compact representation, e.g. cyclic codes. **Problems with decoding errors!**

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 14 (38)

Further improvements for code-based schemes:

Use codes with a more compact representation, e.g. cyclic codes. **Problems with decoding errors!**

Further code-based schemes:

Signature schemes, e.g., CFS: large (huge?) public keys.

Further improvements for code-based schemes:

Use codes with a more compact representation, e.g. cyclic codes. **Problems with decoding errors!**

Further code-based schemes:

- Signature schemes, e.g., CFS: large (huge?) public keys.
- Cryptographic hash functions, e.g., FSB: no competitive performance.

Further improvements for code-based schemes:

Use codes with a more compact representation, e.g. cyclic codes. **Problems with decoding errors!**

Further code-based schemes:

- Signature schemes, e.g., CFS: large (huge?) public keys.
- Cryptographic hash functions, e.g., FSB: no competitive performance.
- Pseudo random number generators: no competitive performance?

Multivariate Cryptography

$$5x_1^3x_2x_3^2 + 17x_2^4x_3 + 23x_1^2x_2^4 + 13x_1 + 12x_2 + 5 = 0$$

$$12x_1^2x_2^3x_3 + 15x_1x_3^3 + 25x_2x_3^3 + 5x_1 + 6x_3 + 12 = 0$$

$$28x_1x_2x_3^4 + 14x_2^3x_3^2 + 16x_1x_3 + 32x_2 + 7x_3 + 10 = 0$$

$$54x_1^6x_3 + 2x_1^4 + 59x_1^2x_2^3 + 42x_1^2x_3^7 + x_1 + 17 = 0$$

Underlying problem:

Solving a system of m multivariate polynomial equations in n variables over \mathbb{F}_q is called the **MP problem**.

Underlying problem:

Solving a system of m multivariate polynomial equations in n variables over \mathbb{F}_q is called the **MP problem**.

Example

$$5x_1^3x_2x_3^2 + 17x_2^4x_3 + 23x_1^2x_2^4 + 13x_1 + 12x_2 + 5 = 0$$

$$12x_1^2x_2^3x_3 + 15x_1x_3^3 + 25x_2x_3^3 + 5x_1 + 6x_3 + 12 = 0$$

$$28x_1x_2x_3^4 + 14x_2^3x_3^2 + 16x_1x_3 + 32x_2 + 7x_3 + 10 = 0$$

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 15 (38)

Underlying problem:

Solving a system of m multivariate polynomial equations in n variables over \mathbb{F}_q is called the **MP problem**.

Example

$$5x_1^3x_2x_3^2 + 17x_2^4x_3 + 23x_1^2x_2^4 + 13x_1 + 12x_2 + 5 = 0$$

$$12x_1^2x_2^3x_3 + 15x_1x_3^3 + 25x_2x_3^3 + 5x_1 + 6x_3 + 12 = 0$$

$$28x_1x_2x_3^4 + 14x_2^3x_3^2 + 16x_1x_3 + 32x_2 + 7x_3 + 10 = 0$$

Hardness:

The MP problem is an *NP-complete* problem even for multivariate *quadratic* systems and q = 2.

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 15 (38)

Underlying problem:

Solving a system of m multivariate polynomial equations in n variables over \mathbb{F}_q is called the **MP problem**.

Example

$$x_{3}x_{2} + x_{2}x_{1} + x_{2} + x_{1} + 1 = 0$$
$$x_{3}x_{1} + x_{3}x_{2} + x_{3} + x_{1} = 0$$
$$x_{3}x_{2} + x_{3}x_{1} + x_{3} + x_{2} = 0$$

Hardness:

The MP problem is an *NP-complete* problem even for multivariate *quadratic* systems and q = 2.

Notation:

For a set $f = (f_1, \ldots, f_m)$ of m quadratic polynomials in n variables over \mathbb{F}_2 , let $f(x) = (f_1(x), \ldots, f_m(x)) \in \mathbb{F}_2^m$ be the solution vector of the evaluation of f for $x \in \mathbb{F}_2^n$.

Notation:

For a set $f = (f_1, \ldots, f_m)$ of m quadratic polynomials in n variables over \mathbb{F}_2 , let $f(x) = (f_1(x), \ldots, f_m(x)) \in \mathbb{F}_2^m$ be the solution vector of the evaluation of f for $x \in \mathbb{F}_2^n$.

Definition (\mathcal{MQ} over \mathbb{F}_2)

Let $\mathcal{MQ}(\mathbb{F}_2^n, \mathbb{F}_2^m)$ be the set of all systems of quadratic equations in n variables and m equations over \mathbb{F}_2 . We call one element $P \in \mathcal{MQ}(\mathbb{F}_2^n, \mathbb{F}_2^m)$ an instance of \mathcal{MQ} over \mathbb{F}_2 .

- System Parameters: $m, n, \in \mathbb{N}$.
- Key Generation: choose "random" $f \in \mathcal{MQ}(\mathbb{F}_2^n, \mathbb{F}_2^m)$ such that f^{-1} is secretly known.
- Public Key: f.
- Private Key: f^{-1} .

- System Parameters: $m, n, \in \mathbb{N}$.
- Key Generation: choose "random" $f \in \mathcal{MQ}(\mathbb{F}_2^n, \mathbb{F}_2^m)$ such that f^{-1} is secretly known.
- Public Key: f.
- Private Key: f^{-1} .
- Encryption: to encrypt message $m \in \mathbb{F}_2^n$, compute c = f(m).

- System Parameters: $m, n, \in \mathbb{N}$.
- Key Generation: choose "random" $f \in \mathcal{MQ}(\mathbb{F}_2^n, \mathbb{F}_2^m)$ such that f^{-1} is secretly known.
- Public Key: f.
- Private Key: f^{-1} .
- Encryption: to encrypt message $m \in \mathbb{F}_2^n$, compute c = f(m).
- Decryption: Decrypt $m = f^{-1}(c)$.

- System Parameters: $m, n, \in \mathbb{N}$.
- Key Generation: choose "random" $f \in \mathcal{MQ}(\mathbb{F}_2^n, \mathbb{F}_2^m)$ such that f^{-1} is secretly known.
- Public Key: f.
- Private Key: f^{-1} .
- Encryption: to encrypt message $m \in \mathbb{F}_2^n$, compute c = f(m).
- Decryption: Decrypt $m = f^{-1}(c)$.

Problem:

How do you find f and f^{-1} such that f is a hard instance of MQ?

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 17 (38)

Design pattern

Usually, f is constructed as a sequence of invertible functions, e.g.,

$$f=r\circ s\circ t$$

with r and t multivariate linear and s quadratic with a easy-to-invert structure.

Design pattern

Usually, f is constructed as a sequence of invertible functions, e.g.,

 $f = r \circ s \circ t$

with r and t multivariate linear and

s quadratic with a easy-to-invert structure.

This often does **NOT** result in a hard instance of \mathcal{MQ} !

Design pattern

Usually, f is constructed as a sequence of invertible functions, e.g.,

 $f=r\circ s\circ t$

with r and t multivariate linear and

s quadratic with a easy-to-invert structure.

This often does **NOT** result in a hard instance of \mathcal{MQ} !

Recent secure (i.e., not yet broken?) examples:

- Rainbow signature scheme,
- Quartz or HFEv- signature scheme,
- PMI+ public key encryption scheme.

Design pattern

Usually, f is constructed as a sequence of invertible functions, e.g.,

 $f=r\circ s\circ t$

with r and t multivariate linear and

s quadratic with a easy-to-invert structure.

This often does **NOT** result in a hard instance of \mathcal{MQ} !

Recent secure (i.e., not yet broken?) examples: Rainbow signature scheme, Quartz or HFEv- signature scheme, PMI+ public key encryption scheme.

Further MQ schemes:

- symmetric encryption schemes,
- cryptographic hash functions, and
- pseudo random number generators.

Further MQ schemes:

- symmetric encryption schemes,
- cryptographic hash functions, and
- pseudo random number generators.

Concerns about MQ schemes:

- Most public-key encryption schemes have been broken!
- Efficient (sparse) \mathcal{MQ} instances have problems with randomness!

Hash-based Cryptography

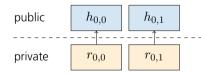
Hash-based Cryptography Introduction

Basic idea:

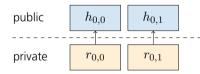
Computing pre-images of a cryptographic hash function remains hard also for quantum computers (Grover).

 \Rightarrow Use pre-image as private key, hash-value as public key.

Hash-based Cryptography Lamport and Merkle



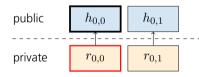
Hash-based Cryptography Lamport and Merkle



Message: 0_b

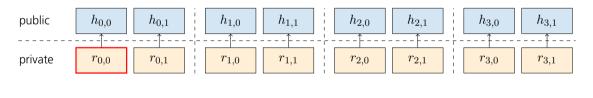
Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 21 (38)

Hash-based Cryptography Lamport and Merkle

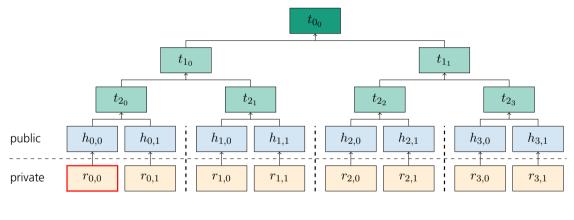


Message: 0_b

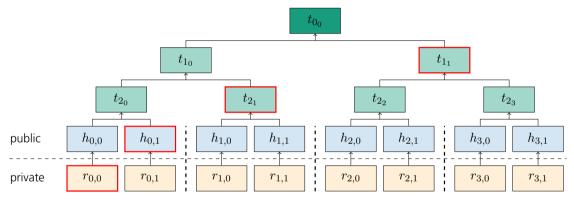
Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 21 (38)



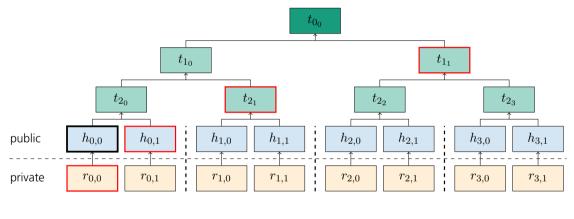
Message: 0_b



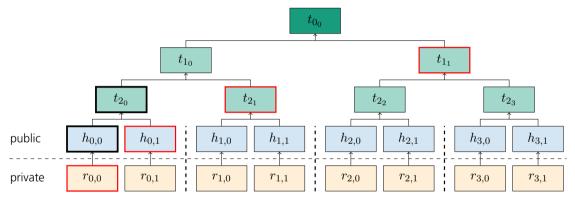
Message: 0_b



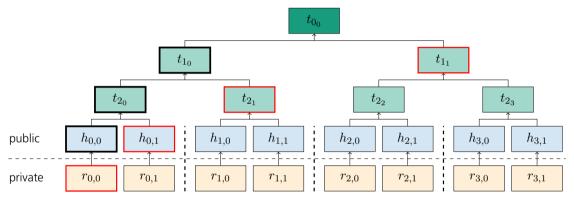
Message: 0_b



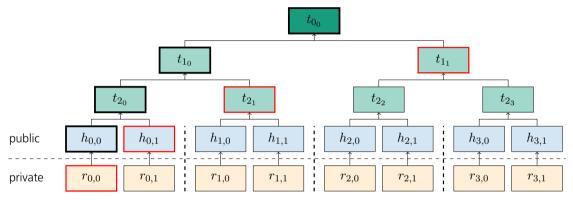
Message: 0_b



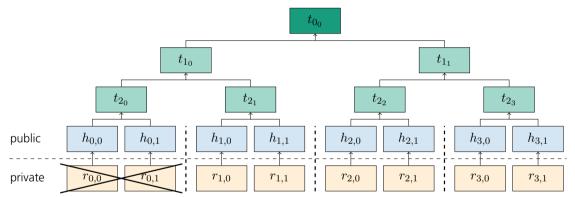
Message: 0_b

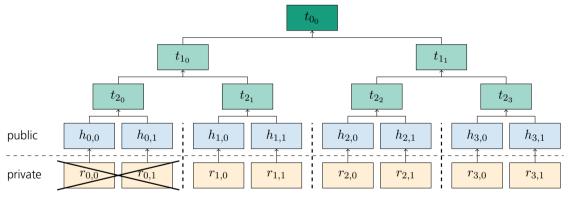


Message: 0_b

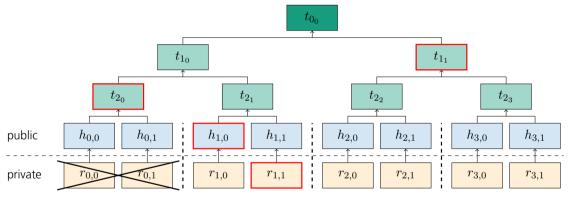


Message: 0_b

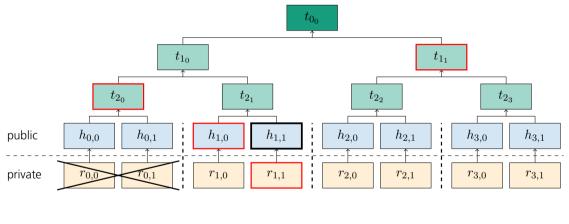




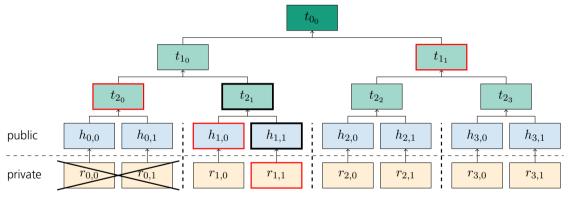
Message: 1_b



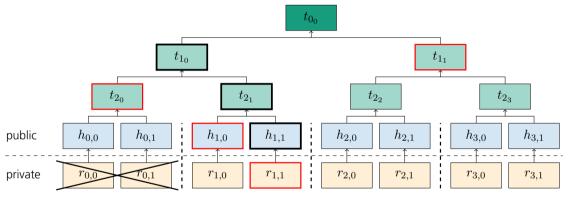
Message: 1_b



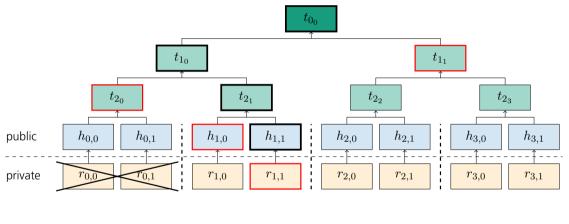
Message: 1_b



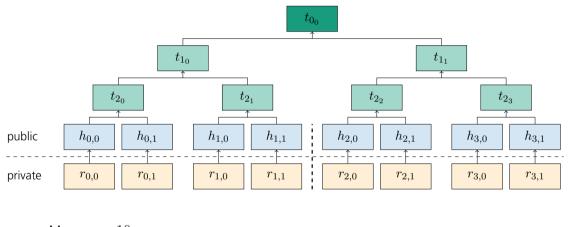
Message: 1_b



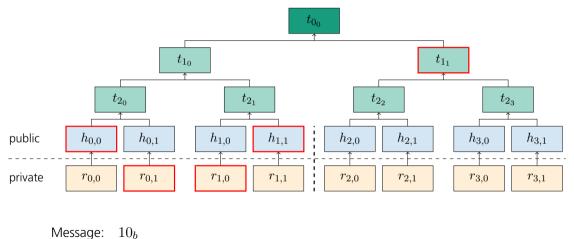
Message: 1_b

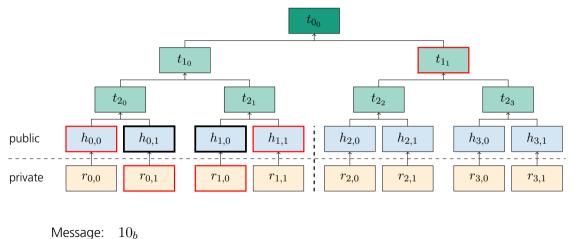


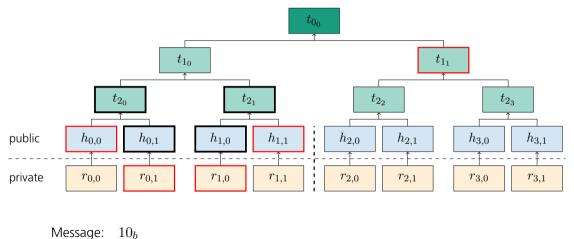
Message: 1_b

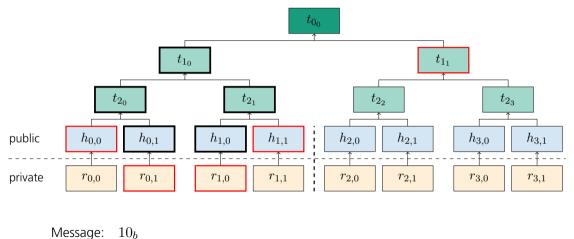


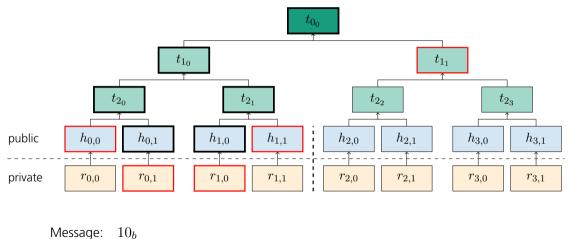
Message: 10_b

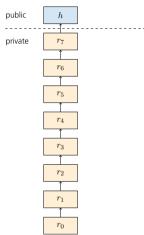


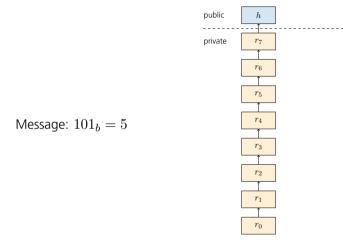


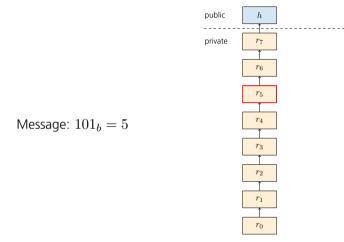


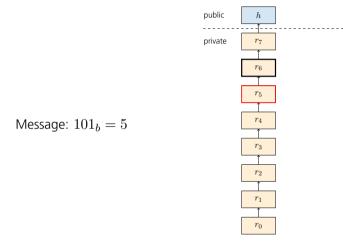


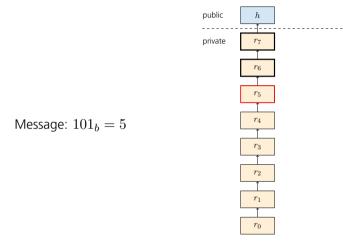


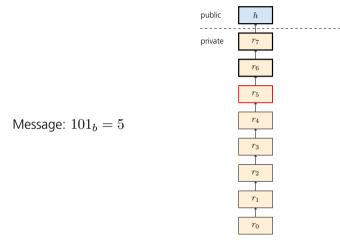


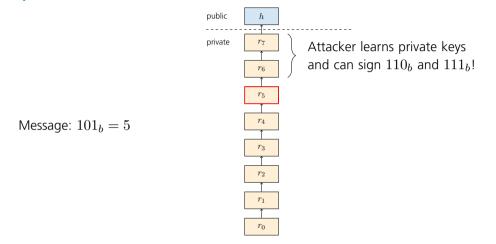


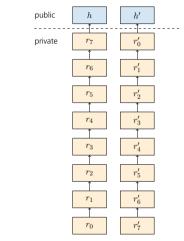




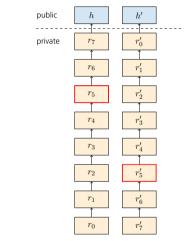




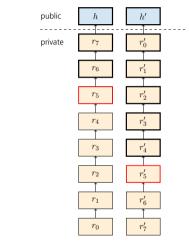




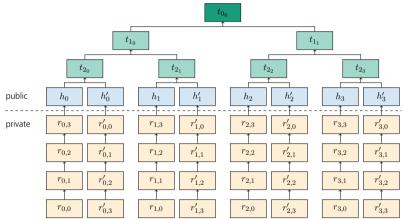
Message: $101_b = 5$

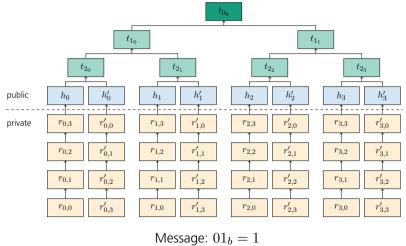


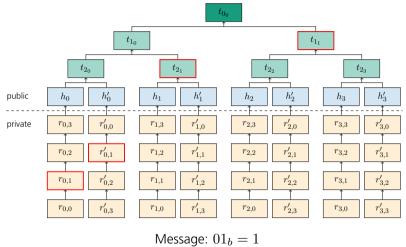
Message: $101_b = 5$

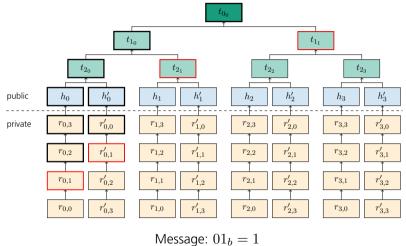


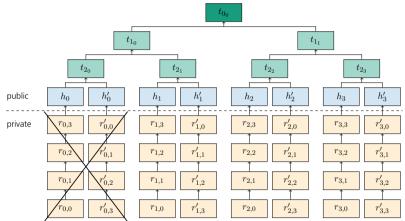
Message: $101_b = 5$

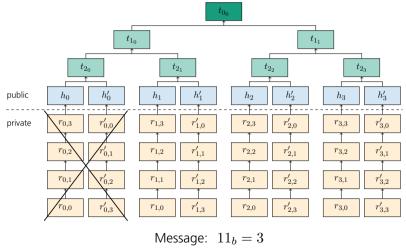




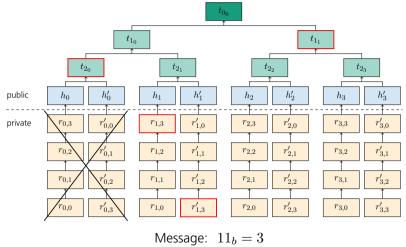




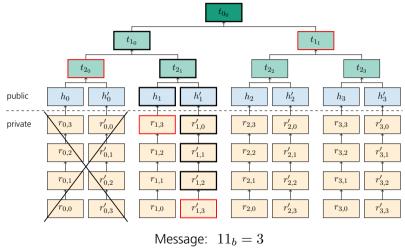




Hash-based Cryptography (Simplified) Winternitz and Merkle Tree



Hash-based Cryptography (Simplified) Winternitz and Merkle Tree



Summary:

Only helpful for Signatures.

- Only helpful for Signatures.
- Number of signatures per public key is limited.

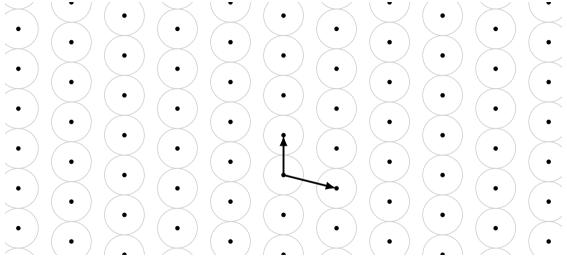
- Only helpful for Signatures.
- Number of signatures per public key is limited.
- Tree structures allow to sign many messages, e.g., XMSS.

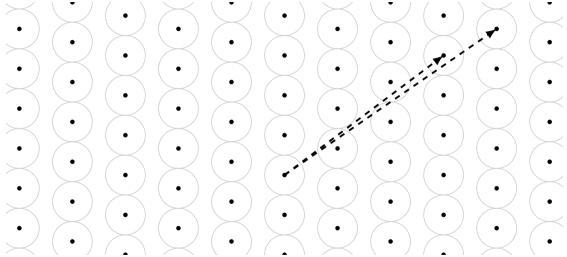
- Only helpful for Signatures.
- Number of signatures per public key is limited.
- Tree structures allow to sign many messages, e.g., XMSS.
- There are sate free schemes, e.g., SPHINCS.

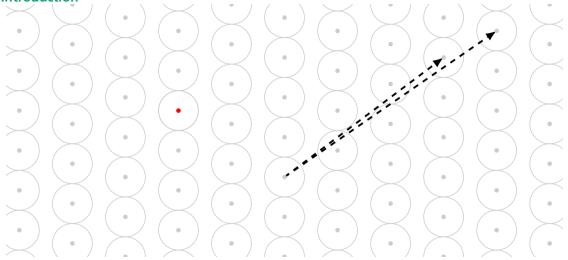
- Only helpful for Signatures.
- Number of signatures per public key is limited.
- Tree structures allow to sign many messages, e.g., XMSS.
- There are sate free schemes, e.g., SPHINCS.
- Key generation is expensive.

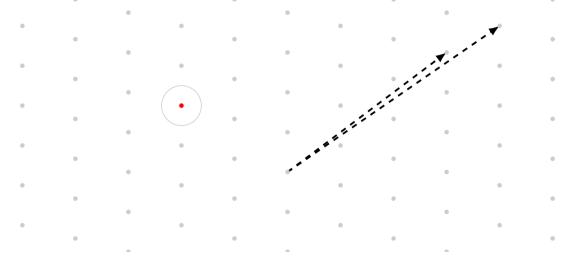
- Only helpful for Signatures.
- Number of signatures per public key is limited.
- Tree structures allow to sign many messages, e.g., XMSS.
- There are sate free schemes, e.g., SPHINCS.
- Key generation is expensive.
- Signatures are relatively large.

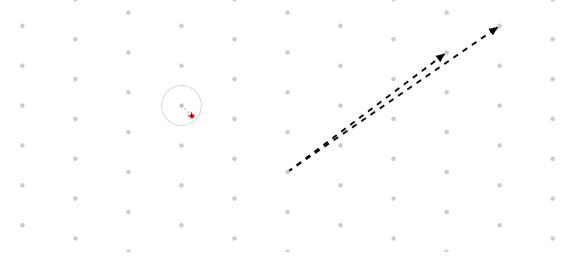
Lattice-based Cryptography

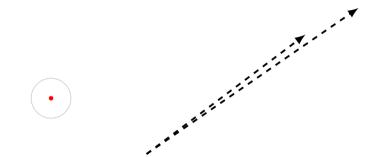


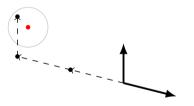












Underlying hard problems:

- CVP: closest vector problem,
- SVP: shortest vector problem,
- LWE: learning with errors.

Underlying hard problems:

- CVP: closest vector problem,
- SVP: shortest vector problem,
- LWE: learning with errors.

Popular lattice-based schemes:

- public key encryption: NTRU, NTRU prime;
- key exchange: New Hope (experimentally used by Google).

Security proofs of lattice-based schemes:

 There are security proofs and worst-case to average-case reductions.

Security proofs of lattice-based schemes:

- There are security proofs and worst-case to average-case reductions.
- Security proofs are not tight:

Security parameters are chosen based on *best-known* attacks, not based on security proofs.

Security proofs of lattice-based schemes:

- There are security proofs and worst-case to average-case reductions.
- Security proofs are not tight:

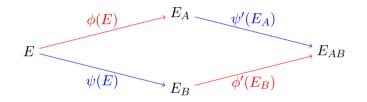
Security parameters are chosen based on *best-known* attacks, not based on security proofs.

Problems with lattice-based schemes:

- Attack-complexity not yet deeply understood,
- attacks are improved frequently.



Supersingular Isogenies Overview

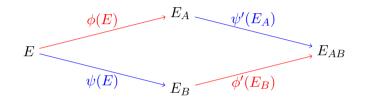


Basic idea:

- Use secret mappings (isogenies) between elliptic curves to compute a shared secret.
- Does not operate on points of a curve but on curves using maps.



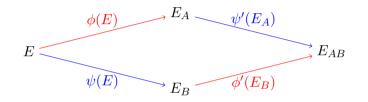
Supersingular Isogenies Overview



Features:

- **DH-like PQ key exchange scheme.**
- + Small communication overhead.
- High computational cost.

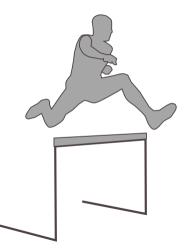
Supersingular Isogenies Overview



Problems:

- Very recent proposal; security not yet well understood.
- First proposal with *ordinary* curves broken by quantum computers.
- New proposal using supersingular curves under examination.

Performance and Challenges



Performance and Challenges Recommendations

Initial recommendations from the "PQCRYPTO project" (2015) [1]:

- Symmetric Encryption:
 - AES-256,
 - Salsa20 with 256-bit key.

Performance and Challenges Recommendations

Initial recommendations from the "PQCRYPTO project" (2015) [1]:

- Symmetric Encryption:
 - AES-256,
 - Salsa20 with 256-bit key.
- Public-key Encryption:
 - McEliece with binary Goppa codes using length n = 6960, dimension k = 5413, and adding t = 119 errors.

Performance and Challenges Recommendations

Initial recommendations from the "PQCRYPTO project" (2015) [1]:

- Symmetric Encryption:
 - AES-256,
 - Salsa20 with 256-bit key.
- Public-key Encryption:
 - McEliece with binary Goppa codes using length n = 6960, dimension k = 5413, and adding t = 119 errors.
- Public-key Signatures:
 - XMSS (with state),
 - SPHINCS-256 (stateless).

Time line:	
Feb. 2016	Announcement at PQCrypto 2016

Time line:

- Feb. 2016 Announcement at PQCrypto 2016
- April 2016 NIST releases NISTIR 8105 Report on Post-Quantum Cryptography

Time line:

- Feb. 2016 Announcement at PQCrypto 2016
- April 2016 NIST releases NISTIR 8105 Report on Post-Quantum Cryptography
- Dec. 2016 Formal Call for Proposals

Time line:	
Feb. 2016	Announcement at PQCrypto 2016
April 2016	NIST releases NISTIR 8105 — Report on Post-Quantum Cryptography
Dec. 2016	Formal Call for Proposals
Nov. 2017	Deadline for submissions

Time line:	
Feb. 2016	Announcement at PQCrypto 2016
April 2016	NIST releases NISTIR 8105 — Report on Post-Quantum Cryptography
Dec. 2016	Formal Call for Proposals
Nov. 2017	Deadline for submissions
Early 2018	Workshop — Submitter's Presentations

Time line:	
Feb. 2016	Announcement at PQCrypto 2016
April 2016	NIST releases NISTIR 8105 — Report on Post-Quantum Cryptography
Dec. 2016	Formal Call for Proposals
Nov. 2017	Deadline for submissions
Early 2018	Workshop — Submitter's Presentations
3-5 years	Analysis Phase — NIST will report findings
	1-2 workshops during this phase

Performance and Challenges NIST Post-Quantum Cryptography Standardization

Time line:	
Feb. 2016	Announcement at PQCrypto 2016
April 2016	NIST releases NISTIR 8105 — Report on Post-Quantum Cryptography
Dec. 2016	Formal Call for Proposals
Nov. 2017	Deadline for submissions
Early 2018	Workshop — Submitter's Presentations
3-5 years	Analysis Phase — NIST will report findings
	1-2 workshops during this phase
2 years later	Draft Standards ready

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 30 (38)

Performance and Challenges NIST Post-Quantum Cryptography Standardization

Round 1 Submissions:					
Signatures	KEM/Encryption	sum			
5	23	28			
3	17	20			
7	3	10			
2		2			
3	6	9			
20	49	69			
	5 3 7 2 3	3 17 7 3 2 3 3 6			

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 31 (38)

Scheme	Public key size (bytes)	Data size (bytes)
Classical schemes:		
• RSA:		
– RSA-2048	256	256
– RSA-4096	512	512
• ECC:		
– 256-bit	32	32
– 512-bit	64	64
• Key exchange:		
– DH	—	256 – 512
– ECDH	_	32 – 64

Scheme	Public key size (bytes)	Data size (bytes)
Public-key signatures:		
 Hash based: XMSS (stateful) SPHINCS (state free) 	64 1,056	2,500 – 2,820 41,000
 Multivariate based: HFEv- Rainbow 	500,000 – 1,000,000 148,500 – 1,321,000	25 – 32 64 – 147
 Lattice based: Dilithium qTESLA 	896 – 1760 2,976 – 6,432	1386 – 3365 2,720 – 5,920

Scheme	Public key size (bytes)	Data size (bytes)
Public-key encryption:		
 Code based: McEliece (binary Goppa codes) McEliece (QC-MDPC codes) 	958,482 – 1,046,739 4,097	187 – 194 8,226
 Lattice based: NTRUEncrypt Kyber (KEM) 	1,023 – 4,097 1,088	1023 – 4,097 1,184

Scheme	Public key size (bytes)	Data size (bytes)
Key exchange:		
 Lattice based: NewHope Kyber (KEX) 		1,824 – 2,048 1,184 – 2,368
 Supersingular isogenies: SIDH 	_	564

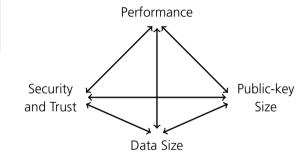
Performance and Challenges Relative Performance

Family	Key Generation	Public Key Encryption/Verification	Private Key Decryption/Signing
Code based:	slow	fast	medium
Multivariate:	slow	fast	medium
Hash based:	slow	fast	slow
Lattice based:	fast	fast	fast
Isogenies:			
ECC-256 RSA-3072	fast slow	medium fast	fast slow

Performance and Challenges Challenges

Open research questions:

- Make trusted schemes more efficient.
- Make efficient schemes more reliable.



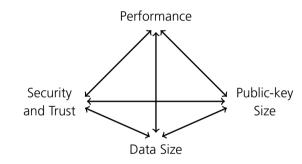
Performance and Challenges Challenges

Open research questions:

- Make trusted schemes more efficient.
- Make efficient schemes more reliable.

Real-world PQC:

- Investigate the usability of PQC schemes in real-world applications.
- Prepare applications for the transition to PQC. ⇒ crypto-agility



Thank you for your attention!

Literature

- D. Augot, L. Batina, D. J. Bernstein, J. Bos, J. Buchmann, W. Castryck, O. Dunkelman, T. Güneysu, S. Gueron, A. Hülsing, T. Lange, M. S. E. Mohamed, C. Rechberger, P. Schwabe, N. Sendrier, F. Vercauteren, and B.-Y. Yang. *Initial recommendations of long-term secure post-quantum systems*. Tech. rep. http://pqcrypto.eu.org/docs/initial-recommendations.pdf. PQCRYPTO Horizon 2020 ICT-645622, Sept. 2015.
- D. J. Bernstein, J. Buchmann, and E. Dahmen, eds. *Post Quantum Cryptography*. Springer, 2008.
- D. Deutsch. "Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer". In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 400.1818 (1985), pp. 97–117.

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 36 (38)

Image Credits

Title page:by IBM Research, CC BY-ND 2.0Telegraph:CC0 Creative CommonsHash browns:by Crisco 1492, CC BY-SA 3.0Lettuce:CC0 Creative CommonsElliptic curve:by Yassine Mrabet, CC BY-SA 3.0Hurdle:CC0 Creative Commons

Contact Information

Dr. Ruben Niederhagen

Cyber-Physical System Security

Fraunhofer-Institute for Secure Information Technology

Address: Rheinstraße 75 64295 Darmstadt Germany Internet: http://www.sit.fraunhofer.de

 Phone:
 +49 6151 869-135

 Fax:
 +49 6151 869-224

 E-Mail:
 ruben.niederhagen@sit.fraunhofer.de

Post-Quantum Cryptography | Dr. Ruben Niederhagen | February 8, 2016 | 38 (38)

